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Abstract

Systems of polynomial equations arise in a wide range of applications, from statistical eco-
nomics to robot motion planning. Sometimes it’s helpful just to count the number of solutions
to the system of equations. In enumerative geometry we count the the number of geometric
objects that satisfy a specific system of polynomial constraints. The goal of this project is to
count the number of hyperplane arrangements sharing the same combinatorial type that also
satisfy a list of geometric conditions. We develop explicit formulas for families of generic
hyperplane arrangements in any dimension, as well as for families of pencils in the projective
plane.

Our main result is that there are 16695 different braid arrangements of 6 lines contain-
ing 8 fixed points in general position. Moreover, we determine the characteristic numbers of
3 generic lines. Using these numbers, we solve all possible intersection problems involving
3 generic lines. In order to compute these enumerative results, we use both combinatorial
methods and intersection polynomials in the Chow ring. The enumerative results give deep
information about the moduli space of arrangements with a fixed intersection type. Mnëv’s
Universality Theorem shows these spaces, the points of which are themselves individual ar-
rangements, can be arbitrarily complicated (see Mnëv [18] and Vakil [30]); however, we use
Macaulay2 to determine explicit minimal defining equations of the ideal of the Zariski closure
of the moduli space of the braid arrangement.

We also develop code for the computer algebra package SAGE [27] to compute the mul-
tivariate Tutte polynomial After extensive computer trials in SAGE, we found relationships
between evaluations of the Tutte polynomial and the solutions to enumerative problems for
generic arrangements and pencils, but in general the precise connection between these is elu-
sive. In another direction we count the number of combinatorial types of arrangements with
six or fewer lines. These counts also enumerate the number of realizable rank-3 matroids.

Keywords

Enumerative Geometry
Hyperplane Arrangements

Tutte Polynomial
Chow Ring

Braid Arrangement
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1 Introduction

Enumerative geometry is the field of mathematics concerned with counting the number of geo-
metric objects that satisfy some specified conditions. Enumerative problems have been a driving
force throughout the history of mathematics, dating back to the Problem of Apollonius (see Smith
et al. [24]) and Pappus’ Theorem (see Richter-Gebert [21]). The quest to answer these problems
has propelled the areas of algebraic geometry, commutative algebra, combinatorics, and algebraic
topology, to name a few. Hilbert’s 15th problem asks for a rigorous treatment of Schubert’s calcu-
lus, which is still an active area of research with exciting connections to string theory (see Hilbert
[13], Kleiman [17], and Katz [16]). Enumerative problems are often quite easy to state, but in
many cases prove very difficult to solve.

In this paper, we answer enumerative questions concerning hyperplane arrangements. A hyper-
planeH is a vector space V is a codimension-1 linear subspace of V , and a hyperplane arrangement
A is a finite collection of hyperplanes (see Orlik and Terao for general reference on hyperplane ar-
rangements [20]). Each hyperplane arrangement A has an intersection lattice L(A), which is the
set of all intersections of the hyperplanes inA, ordered by reverse inclusion. Assuming our hyper-
planes contain the origin in V , we can view an arrangement projectively in Pn , which we discuss
in Sections 2.1 and 4. While enumerative problems in P1 are trivial, there are extremely difficult
and open problems in the projective plane P2, in which hyperplanes are lines (see Rimányi et al.
[22]). The main question of this project is: how many distinct line arrangements with a fixed inter-
section lattice L contain d points in general position in P2? We develop explicit formulas to answer
this question for the celebrated intersection lattices of generic arrangements, pencils, and the braid
arrangement. The techniques used range from combinatorial counting methods (see Dekking et al.
[3]) to intersection polynomials in the Chow ring (see Fulton [7]) to evaluations of the multivariate
Tutte polynomial (see Sokal [25]). The intersection polynomial in the Chow ring has been used
to solve enumerative problems before, but not for problems involving hyperplane arrangements.
Similarly, as far as we know this is the first use of the multivariate Tutte polynomial to compute
enumerative results for hyperplane arrangements.

Our most difficult result, Theorem 6.1.1, counts the number of braid arrangements through 8
points. The braid arrangement has a number of very important real-world applications. The com-
plement of the braid arrangement can be used for robot motion planning to prevent collisions (see
Ghrist [8]). The complement of the braid arrangement is also useful in proving Arrow’s Impossibil-
ity Theorem, which can be tersely summarized as saying that a dictatorship is the only fair voting
system (see Arrow [1] and Terao [29]). The main result, which we verify using two independent
methods, is that the number of distinct braid arrangements through 8 points in general position is
16695, as shown in Theorem 6.1.1. Constructing the intersection polynomial for the braid arrange-
ment and interpreting its results requires great care, because there is “excess” intersection. We also
determine the minimal defining equations for the moduli space of the braid arrangement, which
is the set of all arrangements with that lattice type, in Section 6.3. This process involves taking
the Zariski closure of the moduli space and finding the corresponding ideal. Rimányi et al. [22]
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considered an equivalent problem, and determined a collection of defining equations. In Section
6.3 we show that some of these defining equations are redundant, and use to Macaulay2 [9] to
provide a list of non-redundant equations.

In addition to answering enumerative problems of line arrangements passing through points
in general position, we also generalize these problems to include tangency conditions imposed
by curves of arbitrary degree. To do this, we compute the characteristic numbers for particular
intersection lattices and then substitute these values into the tangency polynomial described in
Section 7 (the results of this section are inspired by the treatment of enumerative problems in [7,
Section 10.4]).

This project makes extensive use of the computer algebra packages SAGE and Macaulay2
for computations, as well as the program Geogebra to visualize complicated arrangements. In
Appendix A we provide the code for programs we wrote to aid in solving enumerative problems,
including code that generates the multivariate Tutte polynomial for any intersection lattice based
on the independent sets in its matroid. Once this polynomial is created, another program tests for
potential solutions to the enumerative question. To determine the independent sets in a matroid, we
expanded upon SAGE code developed by Professor David Joyner, which in its original form was
hard coded to generate the independent sets of arrangements of three lines, to include arrangements
of an arbitrary number of lines.

2 Basic Definitions

We begin our discussion of this project by introducing key terms, concepts, and notation that will
be used throughout.

A commutative ring is a set of elements closed under two operations, which are normally
called addition and multiplication, that forms an Abelian group with respect to addition (i.e. a set
of elements with an operation that has a unit, has inverses, and is associative and commutative)
and is associative, commutative, and distributive under multiplication. A field is a commutative
ring where every element has a multiplicative inverse. We mainly work with the fields R of real
numbers and C of complex numbers.

2.1 Hyperplane Arrangements

A vector space V over a field K is a group V that admits a distributive action of the field K,
which determines an element cv ∈ V for each c ∈ K and v ∈ V . While many of our results
can be obtained over any coefficient field, they are stronger over the complex numbers, so we fix
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K = C. We restrict our attention to finite-dimensional vector spaces and we identify V with Cn

by choosing a basis for V ; however, for examples defined over the real numbers, we do not lose
much when visualizing them in Rn compared to Cn. A hyperplane H in an n-dimensional vector
space V is the solution set of a linear equation. Hyperplanes are translations of codimension-1
linear subspaces of V . A hyperplane arrangement A is a finite collection of hyperplanes.

Example 2.1.1. Fix the dimension n = 3 and let H1 = {(x, y, z) : x = 0} (abbreviated H1 =
{x = 0}), H2 = {y = 0}, H3 = {x − y = 0}, and H4 = {x + y − z = 0}. Then let
A = {H1, H2, H3, H4}. Figure 1 depicts the real picture of this arrangement.

Figure 1: Hyperplane arrangement of four planes in R3

Working in an arbitrary vector space can be difficult because hyperplanes can be parallel and
therefore not intersect. To avoid this complication, we work in projective space.
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Definition 2.1.2. Fix a field K and an n-dimensional vector space V over K. The projective space
Pn−1K of V over K is the set of all lines through the origin in V . To emphasize the field when
K = R or C, we sometimes write RPn−1 or CPn−1, respectively. In the rest of the paper, we
usually write Pn−1 for CPn−1 since this is the projective space in which we are most interested.

In this project we often work in 2-dimensional complex projective space CP2. Projective space
is so useful because any pair of lines in projective space intersect, whereas in R2 or C2 there exist
pairs that do not intersect. So even if two lines in P2 appear to be parallel locally, they in fact
intersect at infinity, much as two parallel railroad tracks appear to meet at the horizon. There is a
relatively simple way to think of projectivizing a space like Rn or Cn. As an example, projectivize
R3 to get RP2 as follows. We know that RP2 consists of lines in R3 through the origin. However,
there is a large piece of RP2 that consists of lines not contained in the plane z = 0. All such lines
meet the plane z = 1 and we can identify the line – the point in RP2 – by the x and y coordinates
of this point of intersection. So there is a big piece of RP2 that looks like R2. The remaining points
of RP2 are lines in the plane z = 0, that is, points in a copy of RP1. In this way, RP2 = R2 ∪RP1.
Here the points in RP1 are viewed as points at infinity.

Each line through the origin in R3 is determined by a direction vector, a nonzero vector that is
parallel to the line. However, many vectors correspond to the same line, and all of these vectors
are nonzero scalar multiples of one another. This gives rise to homogeneous coordinates on RP2.
The line parallel to vector 〈a, b, c〉 has coordinates [a : b : c]. Of course, [2a : 2b : 2c] = [a : b : c]
because the parallel vectors 〈2a, 2b, 2c〉 and 〈a, b, c〉 determine the same line (for more details, see
Smith [24]).

Example 2.1.3. The plane x + y + z = 0 intersects z = 1 in the line L1 : x + y + 1 = 0, that is
the line y = −x − 1. This is why we say that x + y + z = 0 is the homogenization of L1. Also,
the plane x + y + 2z = 0 intersections z = 1 in the line y = −x − 2, a parallel line L2. The two
lines l1 and L2 do not meet in R2, but their homogenizations meet at [1 : −1 : 0] ∈ RP2.

If points in P2 are lines in R3, it stands to reason that lines in P2 are planes in R3. Figure 2
depicts the projectivization of the hyperplane arrangement in Figure 1, with its lines and points of
intersection labeled.

Projective space can also be thought of as the disjoint union of a number of smaller spaces. Start
with RP2, or real projective 2-space. This can be constructed by taking a copy of R2, wrapping
an R1 around it at infinity, and then closing the R1 with an R0 (to be precise, the R1 wraps twice
around R2). Written more explicitly, RP2 = {[x : y : z] ∈ RP2 : z 6= 0}(∼= R2) ∪ {[x : y : 0] ∈
RP2 : y 6= 0}(∼= R1) ∪ {[x : 0 : 0] ∈ RP2 : x 6= 0}(∼= R0). More generally,

Pn = Cn ∪ Cn−1 ∪ · · · ∪ C1 ∪ C0.

Another interesting property of projective space is its dual. Let p = [a : b : c] be a point in
P2. Then there exists a vector v = 〈a, b, c〉 in R3 representing this point. Recall that a plane can be
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1

2

3

4

P

Q

R

S

Figure 2: Hyperplane arrangement of four lines in P2

determined from a point and a normal vector. For this plane to determine an object in projective
space, it must pass through the origin in R3, so now we have a point (0, 0, 0) on the hyperplane and
a normal vector 〈a, b, c〉 which fix a specific plane in R3. The image in P2 of this hyperplane of R3

is a line p̂ in P2, which we call the dual of p. The equation of this line is ax + by + cz = 0. Note
that scaling the coefficients of this line by a nonzero multiple does not change the line, so each line
in P2 can itself be viewed as a point in some copy of P2, which we call the dual of P2. We denote
the dual of P2 by P2∗. We emphasize that the dual of a point in P2 is a line in P2 (that is, a point in
P2∗). Similarly, the dual of a point in P2∗ is a line in P2∗, which can be interpreted as a point in P2.
In this way, if we dualize a point and then dualize the result, we obtain the original.

Example 2.1.4. The point p = [2 : 1 : 3] dualizes to the line 2x + y + 3z = 0. This is the point
[2 : 1 : 3] in P2∗. Let [a : b : c] be the homogeneous coordinates in P2∗ so that ax+ by + cz = 0 is
the line in P2 corresponding to [a : b : c] ∈ P2∗. A line L in P2∗ looks like

Xa+ Y b+ Zc = 0

for complex numbers X, Y , and Z not all zero. This line dualizes to the point [X : Y : Z] ∈
P2∗∗ ∼= P2. Note that every point on the line L corresponds to a line in P2 through the point
[X : Y : Z] ∈ P2. Thus, requiring a line to pass through a fixed point in P2 restricts our attention
to lines corresponding to points on a hyperplane in P2∗.

Also critical in this project is the intersection lattice of a hyperplane arrangement A.

Definition 2.1.5. Given an arrangement A, let L(A) be the set of the intersections of the elements
of A. We define a partial order on L(A) by reverse inclusion: for all X, Y ∈ L(A), X � Y ⇐⇒
X ⊇ Y . The intersection lattice of A is the poset (L(A),�). When no confusion can result, we
just write L(A) for the intersection lattice of A.
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Remark 2.1.6. If X and Y are two elements of L(A) then their least upper bound X ∨ Y is the
smallest element of L(A) such that X � X ∨ Y and Y � X ∨ Y . Similarly, their greatest lower
boundX∧Y is the largest element of L(A) such thatX∧Y � X andX∧Y � Y . The poset L(A)
is called the intersection lattice because least upper bounds and greatest lower bounds between any
two elements always exist: X ∨ Y = X ∩ Y and X ∧ Y = ∩{Z ∈ L : X ∪ Y ⊆ Z}. Moreover,
for any arrangement A, L(A) is actually a ranked atomic geometric lattice (see Orlik and Terao
[20]), but we don’t need this extra structure for this project.

A hyperplane arrangement’s intersection lattice encodes geometric properties of the arrange-
ment. The objects on each level of the intersection lattice have the same codimension, and the lines
connecting the elements of the intersection lattice indicate containment. Figure 3 is the intersection
lattice for the hyperplane arrangement in Figure 2.

QP R S

L2 L3 L4

∅

P2

L1

Figure 3: Intersection lattice for Figure 2

Remark 2.1.7. As the number of lines ` increases, the number of possible different intersection
lattice types increases very quickly. We were able to generate pictures of all possible intersec-
tion lattice types for ` ≤ 7, but for ` > 7 this is prohibitively time-consuming. The number of
intersection lattice types for ` ≤ 12 are displayed in Table 1.
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Number of Lines ` Intersection Types
1 1
2 1
3 2
4 3
5 5
6 10
7 24
8 69
9 384
10 5250
11 232929
12 28872973

Table 1: Number of Realizable Intersection Lattice Types for ` lines

Figure 4 shows the 10 different intersection lattices for arrangements of six lines.

Figure 4: 10 Intersection Lattice Types for ` = 6 lines
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A matroid is another way to encode combinatorial information about a hyperplane arrangement
(see Stanley [26]).

Definition 2.1.8. A matroid M is a pair (E,I), where E is a finite set called the ground set and I
is a collection of subsets of E called the independent sets such that:

1. The empty set is independent, i.e. ∅ ∈ I .

2. Every subset of an independent set is independent, i.e. for each A′ ⊆ A ⊆ E,A ∈ I ⇒
A′ ∈ I .

3. If A and B are two independent set of I and A has more elements than B, then there exists
an element in A which is not in B that when added to B still gives an independent set.

Using the hyperplane arrangement in Figure 2, we define a matroid where the ground set E is
{L1, L2, L3, L4} and the set of independent sets I is

{{L1}, {L2}, {L3}, {L4}, {L1L2}, {L1L3}, {L1L4}, {L2L3}, {L2L4}, {L3L4},

{L1L2L4}, {L1L3L4}, {L2L3L4}, {L1L2L3L4}}.

In general, given an arrangement A of ` labeled hyperplanes, define the matroid M(A) to be a
matroid whose ground set E is the set of hyperplanes in A. As well, define a subset B ⊆ E, with
k elements, to be an independent set of M(A) if the hyperplanes in B intersect in a linear space of
codimension k.

It follows that the matroid M(A) for the previous example is M(A) =
({L1, L2, L3, L4},P({L1, L2, L3, L4}) \ {L1, L2, L3}), where P(S) denotes the powerset of a set
S, the set of all possible subsets of S.

2.2 Topology, Homology, and Cohomology

Now that we’ve defined some basic terms regarding hyperplane arrangements, we explore a few
important concepts in geometry.

We begin our discussion of enumerative geometry by defining a fundamental mathematical
concept, a topological space. A topological space is a setX together with a collection T of subsets
of X , satisfying the following axioms:
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1. The empty set and X are in T .

2. T is closed under arbitrary union.

3. T is closed under finite intersection.

In this case, T is called a topology on X and the elements of T are called open sets of X .

Example 2.2.1. The Euclidean topology on the set of real numbers R is generated by the basis
consisting of open intervals (x, y) such that x < y. That is to say, any open set in the Euclidean
topology is the union or finite intersection of open intervals.

In our enumerative study of hyperplane arrangements, we encounter some very complicated
higher-dimensional topological spaces. To find solutions to these enumerative problems it is help-
ful to understand the overall structure, or global geometry, of these spaces. Before we define these
spaces, we present a useful tool in describing the global geometry of an arbitrary topological space:
homology and cohomology.

There are a number of different homology and cohomology theories associated with various
types of spaces. Usually these theories involve a sequence of groups with maps between them,
called a chain complex, with the homology groups taking the form of quotient groups cycles

boundaries
=

kernel
image

. For our enumerative questions, we often deal with the singular homology of a topological
space. To define singular homology, we must develop some notation. The first term we define is
the k-simplex.

Definition 2.2.2. The standard k-simplex ∆k is the subset of Rk+1 given by

∆k =

{
(t0, . . . , tk) ∈ Rk+1|

k∑
i=0

ti = 1 and ti ≥ 0 for all i

}
.

A k-simplex can be thought of as the generalization of a triangle or tetrahedron to k dimensions.

Example 2.2.3. Let k = 0. The 0-simplex lies in R1 (the number line), and is the point ∆0 =
{(t0) ∈ R1|∑0

i=0 ti = 1} = {(1)}. A 0-simplex is displayed in Figure 5.

1
t0

Figure 5: 0-simplex
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Let k = 1. The 1-simplex is ∆1 = {(t0, t1) ∈ R2|∑1
i=0 ti = 1, t0 ≥ 0, t1 ≥ 0}, which is the

line segment in R2 from (1, 0) to (0, 1). A 1-simplex is displayed in Figure 6.

(1,0)

(0,1)

t1

t0

Figure 6: 1-simplex

Let k = 2. The 2-simplex, ∆2 = {(t0, t1, t2) ∈ R3|∑2
i=0 ti = 1; t0, t1, t2 ≥ 0}, is the triangle

with vertices at (1, 0, 0),(0, 1, 0), and (0, 0, 1). A 2-simplex is displayed in Figure 7.

(0,0,1)

(0,1,0)

(1,0,0)

t0

t2

t1

Figure 7: 2-simplex

The pattern here is fairly obvious, with the dimension and number of vertices increasing by 1
each time k increases, but the pictures become difficult to draw.
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It is also important to understand the concept of a continuous function as it applies to topology.
A continuous function is one such that the inverse image of an open set is open. A continuous
function f : X → Y between topological spaces is a homeomorphism if f is a bijection and
f−1 : Y → X is continuous. The topology on a k-simplex is induced from the topology of the
ambient Rk+1: open sets on ∆k are all of the form U ∩∆k where U is an open set in Rk+1. With
this topology, the simplex is homeomorphic to a k-dimensional ball.

Now it is possible for us to define singular k-chains and k-cochains.

Definition 2.2.4. Let X be a topological space. The group of singular k-chains Ck(X) is the free
Abelian group generated by the set of all continuous maps from the standard k-simplex to X,

Ck(X) =

{∑
i

nifi|ni ∈ Z, fi : ∆k → X continuous

}
.

The group of k-cochains is Ck(X) =Hom(Ck(X),Z), the homomorphisms from Ck(X) to Z.

Let the boundary map be δk : Ck(X)→ Ck−1(X),∑
r

nrfr 7→
∑
r,i

(−1)inr(fr ◦ ji),

such that ji : ∆k−1 ↪→ ∆k is the map that sends a standard (k − 1)-simplex to the ith face of a
standard k-simplex

(v0, . . . , vk) 7→ (v0, . . . , 0, . . . , vk),

where the 0 is in the (i+ 1)th entry.

Let the coboundary map δk : Ck(X)→ Ck+1(X) be defined by

(δk(f))(Z) = f(δk+1(Z)).

The group Ker(δk) is called the group of k-cocycles Zk(X) and the group Im(δk−1) is called
the group Bk(X) of k-coboundaries.

Now that we have explored some of its technical components, we can define the kthcohomology
group of X .

Definition 2.2.5. The kth cohomology group of a topological space X is the quotient

Hk(X) =
Zk(X)

Bk(X)
.
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Example 2.2.6. Let X be a point p. The kth cohomology group of p is

Hk(p,Z) =

{
Z if k = 0

0 if k > 0

}
.

To see this, we begin by writing down the group of singular k-chains:

Ck(p) =

{∑
i

nifi|ni ∈ Z, fi : ∆k → p

}
=

{
nfk|n ∈ Z, fk : ∆k → p continuous

}
∼= Zfk

There is only one map from a k-simplex ∆k to a point p, which we call fk, and because we can
choose to multiply fk by any integer n, Ck(p) is isomorphic to Zfk. Now we can find the group of
k-cochains:

Ck(p) = Hom(Ck(p),Z)

= Hom(Zfk,Z).

The map φ ∈ Hom(Zfk,Z) is completely determined by φ(fk) ∈ Z, so there is a group
isomorphism such that Ck(p) ∼= Z for all k.

Next we construct our coboundary maps. These k-coboundary maps take homomorphisms of
φk : ∆k → p to homomorphisms δk(φk) : ∆k+1 → p, as shown in (1).

0
δ−1

−−→ C0(p)
δ0−→ C1(p)

δ1−→ C2(p)
δ2−→ · · ·

‖ ‖ ‖
Z Z Z

(1)

Let φ0 ∈ C0(p). Then δ0(φ0) ∈ C1(p) = Hom(Zf1,Z), so δ0(φ0) is completely determined
by the value of (δ0(φ0))(f1). Now

(δ0(φ0))(f1) = φ0(δ1(f1)).
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But δ1(f1) = f1 ◦ j0 − f1 ◦ j1, where

f1 ◦ j0 : ∆0 j0−→ ∆1|0 f1−→ p

and f1 ◦ j1 : ∆0 j1−→ ∆1|1 f1−→ p.
(2)

From (2) we see that f1◦j0 : ∆0 → p and f1◦j1 : ∆0 → p are both f0, so f1◦j0 = f1◦j1 = f0.
Therefore, δ0 sends f1 to f1 ◦ j0 − f1 ◦ j1 = 0(f0), so (δ0(φ0))(f1) = 0(f0) and δ0(φ0) = 0 for all
φ0 ∈ C0(p). That is, δ0 : C0(p) → C1(p) is the zero homomorphism. Then Ker(δ0) = C0(p) =
Zf0 because δ0 is the zero map, and Im(δ−1) = 0 because the only element of its domain is 0.
From this information,

H0(p,Z) =
Ker(δ0)
Im(δ−1)

∼= Zf0
0
∼= Z.

To compute the next coboundary map, let φ1 : Zf1 → Z be an element of C1(p). Then,
δ1(φ1) : Zf2 → Z, is constructed in much the same way as δ0. We know that δ1(φ1) is a map

sending Zf2 to Z that sends f2 to
2∑
i=0

(−1)if2 ◦ ji = f2 ◦ j0 − f2 ◦ j1 + f2 ◦ j2. Each of the f2 ◦ ji
is a composition ∆1 → ∆2|i → p, therefore they are all the map from ∆1 to the point p, that is the
map f1. Since each of these maps is the same, f2 ◦ j0 − f2 ◦ j1 + f2 ◦ j2 = f1. This means that δ1

is the map sending f2 to f1. Identifying Zf2 and Zf1 with Z, we see that δ1 is identified with the
map

Z ∼= Zf2
δ1−→ Zf1 ∼= Z

1 7−→ 1f2 7−→ 1f1 7−→ 1,
(3)

so δ1 is the identity map.

Ker(δ1) = 0 because the only thing the identity map takes to zero is zero, and Im(δ0) = 0
because δ0 is the zero map. Therefore,

H1(p,Z) =
Ker(δ1)
Im(δ0)

∼= 0

0
∼= 0.

Using this method to find all of the coboundary maps, we see a pattern arise. When k is odd,
δk is the identity map, and when k is even, δk is the zero map. From this, we can say that for odd
k, Hk(p,Z) = Ker(Identity)

Im(Zero) = 0
0

= 0, and for even k > 0, Hk(p,Z) = Ker(Zero)
Im(Identity) = Z

Z = 0. Therefore,
for all k > 0, Hk(p,Z) = 0.
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Remark 2.2.7. It turns out that if two topological spaces are homotopy equivalent, then their
homology and cohomology groups are isomorphic. For details and a proof, see Corollary 17 of
Basener [2]. Since Rn is homotopy equivalent to a point,

Hk(Rn,Z) =

{
Z if k = 0

0 if k > 0

}
.

We won’t make additional use of homotopy equivalence, so we don’t give any further details.

LetX be a topological space. Then there is a multiplication operationHk(X,Z)×H`(X,Z)→
Hk+`(X,Z) that is compatible with the group operation on ⊕Hk(X,Z) in such a way that the
cohomology ring H∗(X,Z) = ⊕Hk(X,Z) becomes a graded ring. The multiplication operation
is called the cup product. To define the cup product on cohomology, we first define it on cochains.

Definition 2.2.8. Given two singular cochains φ ∈ Ck(X,Z) and ψ ∈ C`(X,Z), the cup product
φ ∪ ψ ∈ Ck+`(X,Z) is the cochain whose value on a singular simplex σ : ∆k+` → X is given by
the formula

(φ ∪ ψ)(σ) = φ(σ|[v0,...,vk])ψ(σ|[vk,...,vk+`])

where the right-hand side is the product of two integers.

Lemma 2.2.9. δk+`(φ ∪ ψ) = δk(φ) ∪ ψ + (−1)kφ ∪ δ`(ψ) for φ ∈ Ck(X,Z) and ψ ∈ C`(X,Z).

Proof. See Hatcher [12, lemma 3.6 on page 206].

Theorem 2.2.10. The cup product gives a well-defined product in the cohomology ring H∗(X).

Proof. Let [φ] = [φ′] ∈ Ck(X,Z) so that there exists φ′′ ∈ Ck−1(X,Z) with δk−1(φ′′) = φ − φ′.
Let [ψ] = [ψ′] ∈ C`(X,Z) so that there exists ψ′′ ∈ C`−1(X,Z) with δ`−1(ψ′′) = ψ − ψ′. Then

φ ∪ ψ − φ′ ∪ ψ′ = φ ∪ ψ − φ ∪ ψ′ + φ ∪ ψ′ − φ′ ∪ ψ′
= φ ∪ (ψ − ψ′) + (φ− φ′) ∪ ψ′
= φ ∪ δ`−1(ψ′′) + δk−1(φ′′) ∪ ψ′
= (−1)k

(
δk(φ) ∪ ψ′′ + (−1)kφ ∪ δ`−1(ψ′′)

)
+ (4)

δk−1(φ′′) ∪ ψ′ + (−1)k−1φ′′ ∪ δ`(ψ′) (5)
= δk+`−1((−1)kφ ∪ ψ′′ + φ′′ ∪ ψ′),

where in lines (4) and (5) we use the fact that φ and ψ′ are cycles, so δk(φ) = 0 and δ`(ψ′) = 0.
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Cellular homology and cohomology is another interesting, perhaps more approachable way of
thinking of these objects. We will illustrate cellular cohomology using an example of a specific
type of compact complex manifold (see Munkres for the definition of a manifold [19]). Let X be
a compact complex manifold such that X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X , where Xk \ Xk−1 is
a disjoint union of bk copies of Ck. Let Z1

k , . . . , Z
bk
k be the closures of these copies of Ck in X .

For example, Z1
0 is a point with real dimension 0, Z1

1 is a complex curve with real dimension 2,
and Z1

2 is a complex surface and has 4 real dimensions. Heading towards cohomology, we define
C

2k
(X) to be the free Abelian group generated by the set {Z1

k , . . . , Z
bk
k }. These chains have a very

interesting property, which stems from the relationship between the complex and real numbers. As
the dimension of complex space increases by 1, we can think of it increasing in real dimension
by 2, because every complex number has both a real and an imaginary component. Because of
this, every other one of these chain groups C

k
(X) is equal to zero. That is to say, C

2k−1
(X) = 0

and C
2k+1

(X) = 0, but (when bk > 0) C
2k

(X) 6= 0 for 0 ≤ 2k ≤ 2n. We then establish maps
δk : C

k
(X)→ C

k+1
(X):

→ C
2k−1 δ2k−1

−−−→ C
2k δ2k−−→ C

2k+1 δ2k+1

−−−→ C
2k+2 →

‖ ‖
0 0

(6)

All the maps in (6) are the zero map. The maps δ2k send all elements of their domain to
0, and the others δ2k+1 are the identity map, simply taking zero to zero in the range. As we
said earlier in Definition 2.2.5, the k-th cohomology of X is Hk(X) = Ker(δk)

Im(δk−1)
. The image of

the map δ2k−1 is 0, and the kernel of δ2k is everything in its domain C
2k

, so the cohomology is
H2k(X) = Ker(δ2k)

Im(δ2k−1)
= C

2k

0
= C

2k ∼= Zbk . The image of the map δ2k is 0, and the kernel of δ2k+1

is everything in its domain C
2k+1

= 0, so the cohomology is H2k+1(X) = Ker(δ2k+1)
Im(δ2k)

= C
2k+1

0
= 0.

Therefore, the k-th cohomology of the compact complex manifold X is:

Hk(X) =

{
Zbt if k = 2t is even
0 if k is odd

}
.

Example 2.2.11. Recall that RP2 = {[x : y : z] ∈ RP2 : z 6= 0}(∼= R2) ∪ {[x : y : 0] ∈ RP2 :
y 6= 0}(∼= R1) ∪ {[x : 0 : 0] ∈ RP2 : x 6= 0}(∼= R0). That is, RP2 has cellular decomposition
X0 ⊂ X1 ⊂ X2 = RP2, where X0 = R0, X1 \X0 = R1, and X2 \X1 = R2. Similarly, CP2 has
cellular decompositionX0 ⊂ X1 ⊂ X2 = CP2, whereX0 = C0,X1\X0 = C1, andX2\X1 = C2.
Using real cellular cohomology, we find H0(CP2,Z) ∼= Z, H1(CP2,Z) ∼= Z, H2(CP2,Z) ∼= Z,
and all other cohomology groups are 0, so in complex cellular cohomology, H0(CP2,Z) ∼= Z,
H2(CP2,Z) ∼= Z, H4(CP2,Z) ∼= Z, and the other groups are 0. In fact, using the cup product
formula one can check that the generator of H0(CP2,Z) is the identity element in H∗(CP2) and if
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[x] is the generator of H2(CP2,Z), then H4(CP2,Z) is generated by [x]2. So

H∗(CP2) ∼= Z[x]/(x3).

Similarly, H∗(CPn) ∼= Z[x]/(xn+1).

The Kunneth Formula allows us to compute the cohomology ring of a product space.

Theorem 2.2.12 (Kunneth Formula). If topological spaces X and Y both admit cellular de-
compositions and Hk(Y ) is a finitely-generated free Z-module for all k, then H∗(X × Y ) ∼=
H∗(X)⊗Z H

∗(Y ).

Proof. See Hatcher [12, Theorem 3.16].

Example 2.2.13. Applying the Kunneth Formula repeatedly,

H∗((P2)`) ∼= Z[x1, . . . , x`]

(x31, . . . , x
3
`)
.

2.3 Moduli Spaces of Arrangements

In order to count the number of arrangements of a given intersection lattice type that pass through
d points in general position, we introduce a moduli space, the space of all arrangements with fixed
intersection lattice. In general, a moduli space is a set whose elements represent geometric objects
of some fixed kind. Moduli spaces are often equipped with extra structure so that we can interpret
this set as a geometric object in its own right. It is interesting to investigate the geometry of these
moduli spaces (see Harris and Morrison [11]). For example, we might be interested in whether the
moduli space is smooth (a manifold) or singular. If the moduli space is singular, the points in the
singular set may represent interesting examples of our geometric objects. Also, as we will see, the
dimension of the moduli space of arrangements with fixed intersection lattice is the number d such
that our enumerative problem has a finite non-zero answer. A ready example of a moduli space is
Pn, because each point in Pn represents a line through the origin in Rn+1. The dual space P2∗ is
also a moduli space: the elements of P2∗ represent lines in P2. The product (P2∗)` is yet another
example of a moduli space. Every point in the new space (P2∗)` represents a labeled arrangement
of ` lines in P2.

To define the moduli space of arrangements we need to introduce some notation. Choose
coordinates for our ambient projective space Pn so that the basis for Pn∗ is {x0, . . . , xn}. For
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v ∈ (Pn∗)` with v = (V1, . . . , V`) where Vi = (vi0 : · · · : vin) let the arrangement defined by v be

A(v) =
⋃̀
i=1

{vi0x0 + · · ·+ vinxn = 0}.

In the case where n = 2, elements v = (V1, . . . , V`) of (P2∗)` represent line arrangements of `
lines V1, V2, . . . , V` with line equations vi0x0 + vi1x1 + vi2x2 = 0.

Definition 2.3.1. Fix a geometric lattice L of rank n with ` rank-1 elements. The moduli space of
L is

M(L) =
{
v ∈ (Pn∗)`|L(A(v)) ∼= L

}
.

These moduli spaces M(L) are extremely interesting, very difficult to understand, and have
wide-ranging applications throughout mathematics. For example, in [10] Hacking, Keel, and
Tevelev continue the work started by Kapranov in [15] on the compactification of the moduli space
of generic arrangements, and show this compactification can be constructed combinatorially. In
[28], Terao presents a stratification of the moduli spaceM(L) in order to assist computations with
logarithmic Gauss-Manin connections. In another direction, Yuzvinsky in [31] shows that the set
of free arrangements in the moduli spaceM(L) is a Zariski open set.

In [22], Rimányi, Némethi, and László give a connection between some enumerative problems
and the equivariant cohomology of the moduli space M(L). In particular, they show that the
Zariski closure of M(L) as viewed as a subvariety of (Cn+1)` is not the variety given only by
the solutions to the determinantal equations supplied by L. These determinantal equations are
presented nicely in Terao [28]. We study in detail the case when L is the lattice of the braid
arrangement A4 in Section 6.3.

3 Counting Arrangements

The main question we address involves counting hyperplane arrangements that satisfy some geo-
metric conditions.

Question 3.0.2. Fix an intersection lattice L and d points in general position in the projective plane
P2. How many distinct line arrangements with intersection lattice isomorphic to L contain these d
points?

Though these problems are easy to pose, they are very challenging to answer. We use a variety
of methods to answer these questions, since no one method can be easily applied in every case.



24

As well, we apply several methods to some problems: getting the same answer using different
approaches helps validate our results. The first, and most intuitive, method for answering these
enumerative problems involves straightforward counting.

3.1 Combinatorics

Combinatorics is the branch of mathematics concerned with the study of finite or countable discrete
structures. We make frequent use of the binomial coefficient

(
n
k

)
= n!

(n−k)!(k!) in our combinatorial
solutions. The binomial coefficient can be interpreted as the number of different ways to choose
k things from a set of n things (without replacement). It is very important to remember that the
binomial coefficient ignores the order in which items are picked.

We start with a simple intersection type: ` hyperplanes in P2 in general position. Because we
are working in P2, our hyperplane arrangements are line arrangements. The lines are in general
position if no three intersect in a point.

Example 3.1.1. How many arrangements of four lines in general position are there through d
points in P2 that lie in general position?

One way to fix the location of a line in the arrangement is to insist that the line pases through
two given points. Let [x0 : y0 : z0] and [x1 : y1 : z1] be two distinct points. Then{

ax0 + by0 + cz0 = 0

ax1 + by1 + cz1 = 0

}
is a rank-2 system of linear equations and so has a 1-dimensional solution space. Thus there is a
nonzero vector [a : b : c] that is the solution to this system of equations and represents the line
between points [x0 : y0 : z0] and [x1 : y1 : z1]. If we only have one given point, there is an infinite
family of lines through that point, each with a different slope. Since there are four lines and each
line is determined by two points in general position, it seems reasonable that we must fix d = 8
points in general position in order to obtain a finite number of arrangements of this intersection
lattice type through the d points. In Theorem 3.1.2 we’ll give an explicit proof that d = 8.

Now that we know d = 8, we can begin to calculate the number of different arrangements there
are through the same eight points in general position. We do this by using combinatorics. There
are
(
8
2

)
= 8!

6!2!
= 28 ways to pick a pair of two points from the collection of eight points. These two

points determine the first line. Then we choose one of the
(
6
2

)
= 6!

4!2!
= 15 pairs of two points from

the remaining six points for the second line. Next, we fix the third line by putting it through one
of the

(
4
2

)
= 6 pairs that are left over. Finally, the last line goes through the only two remaining

points. You might guess that this means there are
(
8
2

)(
6
2

)(
4
2

)(
2
2

)
= 28 ∗ 15 ∗ 6 ∗ 1 = 2520 different

arrangements of four generic lines through eight points in general position, but this is incorrect.
Consider the arrangements of four lines in general position in Figure 8.
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1

3

4

2 1

2

3

4

Figure 8: Two identical arrangements with different line labels

These are the same arrangement, but the lines in the arrangement were picked in a different
order, i.e. the labels on the lines are different. This means that some of the arrangements we
counted in our 2520 result are identical copies. In fact, each arrangement is being counted 4! = 24
times, because there are 4! ways to permute the labels on the four lines. We call this factor of 24
“overcounting.” The accurate answer to this question, then, is that there are 2520

24
= 105 different

arrangements of four generic lines through eight fixed points in general position.

We use these same methods to count the number of generic arrangements of ` lines through d
points.

Theorem 3.1.2. Given d = 2` points in general position, there are

(2`)!

`!2`

generic arrangements of ` lines that pass through all the points. When d < 2`, the count is∞, and
when d > 2`, the count is 0.

Proof. Let A be an arrangement of ` generic lines.

We begin by proving that d, the number of points, must be equal to 2` for the count to be a
nonzero finite number. Because d is the number of points, it must be a non-zero positive integer.
Let d > 2` points be fixed in general position in P2. By definition of general position, no three
of these points are collinear. However, because there are ` lines in the arrangement and each of
the general points must lie on at least one of these lines, the pigeonhole principle implies that at
least one of the lines contains 3 or more points. This violates the condition that these points are
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in general position. Therefore, the greatest number of points in general position that can possibly
be contained by ` lines is 2`, so d ≤ 2`. Now, let d < 2` points be fixed in general position
in P2. Label these points p1, p2, . . . , pd. Suppose there are an even number of points d = 2k.
Begin placing lines through pairs of points. Using our labels, we can fix line `1 through points p1
and p2, line `2 through p3 and p4, etc. Because there are fewer than 2` of these points in general
position, we will only be able to fix k < ` lines. This means that, as long as they don’t pass
through the intersection of two other lines in the arrangement, `− k lines can be placed anywhere
in the projective plane to create a suitable generic arrangement. Therefore, the number of generic
arrangements through an even number of points d < 2` is infinite. Suppose now that there are an
odd number of points d = 2k + 1, labeled from 1 to 2k + 1. Following the same construction as
above, we fix k lines through the first 2k points. This leaves us with ` − k lines to place in the
arrangement. One of these remaining lines must pass through the last point in general position, but
there are an infinite number of distinct arrangements that can be made by varying the slope of this
line. If `−k is greater than 1, then those other `−k−1 lines can be arranged in an infinite number
of ways that still result in a generic arrangement of ` lines. Therefore, d ≥ 2`. Now we’ve proven
2` ≥ d ≥ 2`⇒ d = 2`.

The process of Example 3.1.1 in which we fix every line in the arrangement (picking two points
at a time from however many are left) is the same for any number of lines `. This gives us a factor
of
(
2`
2

)(
2`−2
2

)(
2`−4
2

)
· · ·
(
4
2

)(
2
2

)
= (2`)!(2`−2)!(2`−4)!···(4)!(2)!

(2`−2)!2!(2`−4)!2!(2`−6)!2!···2!2!2!0! = (2`)!
2`

. Just as in Example 3.1.1, we
must adjust this number for the overcount. Because any line can be assigned any of the ` labels,
the overcount is `!.

Therefore, the number of arrangements of ` generic lines through 2` points is

(2`)!
2`

`!
=

(2`)!

`!2`
.

Another combinatorial intersection type in P2 that admits nice enumerative counts is arrange-
ments in which all lines intersect in a single point. We call arrangements of this type “pencils.”

Example 3.1.3. How many points d must be placed in general position for there to be a finite
nonzero number of pencils of four lines through these d points? How many different pencils of
four lines pass through these d points?

We give a heuristic argument to determine the number of points d in this problem. A rigor-
ous argument will be given in Theorem 3.1.4. We begin in much the same way we did for the
generic arrangement. Fix d = 6 points in general position. Place each of the first two lines in the
arrangement through two of the points in general position. Because we are in projective space,
these two lines must intersect. The final two lines of the arrangement each pass through one of the
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remaining two points in general position and the intersection of the first two lines. This ensures
that all four lines intersect at a single point, which is required for the arrangement to be a pen-
cil. Our choices of points in general position to place each of the lines (2 of the 6 points for the
first line, 2 of the remaining 4 points for the second line, etc.) are reflected in the combinatorics:(
6
2

)(
4
2

)(
2
1

)(
1
1

)
= 6!

22
= 180. Determining the overcount for the pencil is not as straightforward as

for generic arrangements.

1

2
3

4

2

4
3

1

Figure 9: Different labels on a pencil of four lines

Whereas for generic arrangements any change in labeling results in an identical arrangement,
this is not the case for the pencil. In Figure 9 lines 1 and 3 are determined by a different number of
points, making them geometrically different, so their labels can not be interchanged. However, the
labels on 1 and 2, or 3 and 4, may be switched without affecting the arrangement. Therefore, the
overcount for this arrangement is 2 ∗ 2 = 4. This means that the number of pencils of four lines
through six points in general position is 180

4
= 45.

Theorem 3.1.4. Given d = `+ 2 points in general position, there are

1

2

(
`+ 2

2

)(
`

2

)
arrangements of pencils of ` lines through all d points. If d > ` + 2 then there are no pencils
through the d points, and if d < `+ 2 then there are infinitely man such pencils.

Proof. Let A be an arrangement of ` lines in a pencil.

First we must prove that d = `+ 2 points must be placed in general position in P2 to fix a non-
zero finite number of pencils of ` lines. Assume that d > `+2. By the pigeonhole principle, at least
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three of the ` lines contain two or more points in general position. Apart from preventing three
points from being collinear, general position imposes more restrictions: no three lines through
pairs of points can intersect in a common point in space. This presents us with a contradiction.
The ` lines inA are arranged in a pencil, so they all intersect at a single point, but three of the lines
in the arrangement each go through 2 points in general position, making it impossible for them to
intersect at a point. Therefore, d ≤ `+ 2. Now let d < `+ 2, and label these points p1, p2, . . . , pd.
Fix the first line `1 through points p1 and p2 and the second line `2 through points p3 and p4. These
lines intersect at a point which we will call p. We have `− 2 lines left to fix, but only d− 4 ≤ `− 2
points in general position. We can place d− 4 of the `− 2 remaining lines such that each of them
passes through one point in general position and the intersection point p of `1 and `2; however, we
will be left with at least one line. This line must contain the point p, but can be any of an infinite
family of lines that all result in an arrangement of our desired intersection lattice type – a pencil.
Therefore, d ≥ ` + 2. Because the number of arrangements is 0 if d > ` + 2 and∞ if d < ` + 2,
you only get a non-zero finite number of pencils of ` lines if you fix d = ` + 2 points in general
position.

Construct the arrangement A in the same manner as in Example 3.1.3. Before dividing by the
symmetry group, our count is

(
`+2
2

)(
`
2

)(
`−2
1

)(
`−3
1

)
· · ·
(
3
1

)(
2
1

)(
1
1

)
. Recall that the labels on the first

two lines are interchangeable, because they each pass through two general points, as are the labels
on the remaining ` − 2 lines, because they pass through one general point. Accordingly, the size
of the symmetry group is 2 ∗ (`− 2)!.

The resulting count is

(`+2
2 )(

`
2)(

`−2
1 )(

`−3
1 )···(

3
1)(

2
1)(

1
1)

2(`−2)!

=
(`+2

2 )(
`
2)(

`−2
1 )(

`−3
1 )···(

3
1)(

2
1)(

1
1)

2(`−2)!

=
(`+2

2 )(
`
2)(`−2)!

2(`−2)! =
(`+2

2 )(
`
2)

2 .

Another intersection lattice type we have investigated is the tie-fighter, so called because of its
resemblance to the Star Wars spaceship. The tie-fighter is an arrangement of five lines, as shown
in Figure 10.



29

5

4321

Figure 10: A “tie-fighter” arrangement of five lines

We use the same kind of reasoning as for the pencil and generic arrangements to determine that
we need d = 8 points in general position to get a finite nonzero number of tie-fighter arrangements.
The tie-fighter is an important intersection lattice to study because it presents a number of the
common challenges we face in solving our enumerative problem. Whereas the generic arrangement
and pencil are constructed using a single methodology, there are multiple ways of building tie-
fighter arrangements, and these must all be accounted for. The first construction of the tie-fighter
is similar to that of generic arrangements. We place the first four lines by choosing pairs of points
in general position, resulting in four generic lines. The final line in the arrangement passes through
the intersection of the first two generic lines and the intersection of the third and fourth generic
lines. There are eight different labelings on the first four lines that give an arrangement with
equivalent intersection lattice. The labels on generic lines L1 and L2 may be switched, as may the
labels on L3 and L4, contributing 4 to the size of the symmetry group. This number is then doubled
if we switch both L1 and L2 for L3 and L4. If we don’t keep the pairs of labels together, then the
arrangement will change after relabeling. This brings our final symmetry group size to 8. The

resulting combinatorial count is straightforward: (8
2)(

6
2)(

4
2)(

2
2)

8
= 8!

27
= 315. As we said earlier, there

are other constructions for the tie-fighter. In one of these other constructions, two lines are initially
placed through 4 points in general position. The next line passes through one of the remaining
general points and the intersection of the first two lines. The fourth line is another generic line,
fixed by choosing two of the last three points in general position. The final line goes through the
last general point and the intersection of the third and fourth line. This construction is depicted in
Figure 11.

21

3

4 5

Figure 11: A construction of the tie-fighter arrangement
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The labels on the first two generic lines can be exchanged without changing the arrangement,
but none of the others can. This is the only relabeling that maintains both the intersection lattice
and the number of points on each line. Lines L1 and L2 both pass through two points in general
position, whereas line L4 passes through two and line L5 passes through one. Because L1 and
L2 must each pass through two points in general position, we can not exchange their labels with

line L4 and L5. Therefore, the count for this construction is (8
2)(

6
2)

2

(
4
1

)(
3
2

)(
1
1

)
= 8!

24
= 2520. There

is yet another construction for the tie-fighter, which is similar to the previous one in that there
are three generic lines, but in this particular construction the line containing both triple points
passes through two points in general position, instead of one. We begin by placing a generic line
through two points in general position. This line will eventually contain both triple points in the
arrangement. Next, choose two more general points and place another generic line through them.
The third line connects the intersection of the first two lines with one of the four remaining points
in general position. The process used to place the second and third lines is repeated for the fourth
and fifth, creating the other triple point on the first line. As far as overcounting is concerned, the
only relabeling that preserves both the intersection lattice and the number of points on each line
exchanges the labels on lines L2 and L3 for those on lines L4 and L5. Done in this way, relabeling

doesn’t alter the arrangement. In this case, the count comes out to be (8
2)(

6
2)(

4
1)(

3
2)(

1
1)

2
= 8!

24
= 2520.

After careful consideration, we find that there are no other constructions, leaving us with the three
constructions displayed in Figure 12.

5

4321 21

3

4 5

5

1

23 4

Figure 12: The three constructions of the tie-fighter arrangement

Therefore, the final answer to our enumerative problem for the tie-fighter arrangement is 315+
2520 + 2520 = 5355.
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4 Cohomology and the Chow ring

In our setting, we will make use of a particular property of cohomology to equate certain cohomol-
ogy classes. This is a complicated topic that is discussed in detail in Katz chapter 5 [16]. Here we
just sketch the ideas. Given a topological space X , we have the projection map π2 : X × P1 → P1

sending (x, p) to p. We identify the preimages π−12 (p) with X . Given two points a and b in P1, any
closed subspace S ofX×P1 induces a deformation from Va = S∩π−12 (a) to Vb = S∩π−12 (b). Fix
a basis in P1 identified as R ∪∞ such that a = 0 and b =∞. The boundary of S ∩ {X × [0,∞]}
is zero in cohomology. On the other hand, the boundary is also [Va] − [Vb]. So [Va] − [Vb] = 0
and [Va] = [Vb]. By this reasoning, if we can deform any variety V1 to another variety V2, then
[V1] = [V2].

For an explicit example, let X = P2 and consider S = V((s − t)z2 + (t)xy) in P2 × P1.
Choosing a basis for P1 so that [s : t] = [0 : 1] describes the point 0 in P1 and [s : t] = [1 : 0]
describes the point∞ in P1, V0 = V(xy − z2) – the set of points in P2 where xy − z2 = 0 – and
V∞ = V(z2). Therefore, the cohomology class [V(z2 − xy)] is equal to the class [V(z2)], which is
2[V(z)]. In general, the class of a degree d hypersurface in Pn equals d[H] where [H] is the class
of a hyperplane H in Pn.

Let’s investigate the equivalence classes in cohomology a little more closely. Let H be a hy-
perplane in P2∗. H has an equation AX+BY +CZ = 0 whereX, Y, and Z are the homogeneous
coordinates on P2∗. [X : Y : Z] represents the line Xx + Y y + Zz = 0 in R3. In P2∗ the co-
ordinates X, Y, and Z can take any real value as long as AX + BY + CZ = 0 for some fixed
A,B, and C and not all X ,Y , and Z are zero. Then, once a particular set of values X, Y, and Z
is chosen, x, y, and z may also take any real values such that Xx + Y y + Zz = 0. Therefore a
hyperplane in P2∗ consists of all lines through a fixed point in P2 (as in Example 2.1.4). Now let
H1 = {[X : Y : Z] : A1X+B1Y +C1Z = 0} and H2 = {[X : Y : Z] : A2X+B2Y +C2Z = 0}
be two hyperplanes in P2. These hypersurfaces are the boundaries of S ⊂ P2 × P1 given by

(t− s)(A1X +B1Y + C1Z) + s(A2X +B2Y + C2Z) = 0

in the sense that π−12 ([0 : 1]) = H1 and π−12 ([1 : 0]) = H2. This shows, as we said earlier about the
classes of boundaries in cohomology, [H1] = [H2] = [H]. The fact that the equivalence classes of
all of these hyperplanes are equal is very important. It says that any hyperplane is equivalent to any
other hyperplane it can be deformed to. In particular the class of the lines in P2 passing through a
given point is well-defined and does not depend on the point.

The Chow ring A∗(X) is another important cohomological object we make use of. Much like
we did for singular cohomology, we must first define some relevant terms. For proofs and further
explanations of these terms beyond the scope of this paper, see Fulton [7].

Definition 4.0.5. Let X be a topological space. The k-cycles Zk(X) of X is the free Abelain
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group on the k-dimensional subvarities of X .

Zk(X) =
{∑

nivi : ni ∈ Z and dim(vi) = k
}
.

We say that α =
∑
nivi ∈ Zk(X) is rationally equivalent to 0 if there exist finitely many

dimension k + 1 subvarieties wj and nonconstant maps φj : wj → P1 so that
∑
j

(φ−1i ([0 : 1]) −

φ−1i ([1 : 0])) = α. Define Ratk(X) = {α ∈ Zk(X) : α rationally equivalent to 0}, a subgroup of
Zk(X), and the k-th Chow group Ak(X) = Zk(X)/Ratk(X).

Then two k-cycles α1 and α2 are equivalent if α1−α2 is rationally equivalent to 0, i.e. α1−α2 ∈
Ratk(X). Then ⊕Ak(X) = A∗ is a ring with product defined by [v1][̇v2] = [v1 ∩ v2], whenever v1
and v2 intersect transversely (that is, whenever the tangent spaces to v1 and v2 only meet in a space
of codimension equal to codim(v1)+codim(v2)). The sum inAk is defined by [v1]+[v2] = [v1∪v2]
when v1 and v2 intersect transversely. Moreover, when X is a smooth manifold, as is the case with
P2, there is an isomorphism

A∗(X)→ H∗(X)

of graded rings sending Ak(X) to Hn−k(X), where n = dim(X).

Example 4.0.6. The Chow ring A∗(CPn) is isomorphic to the cohomology ring H∗(CPn,Z) =
Z[x]/(xn+1). To be precise, the image of the class of a hyperplane in CPn is the class [x], the
generator of H1(CPn). Thus,

A∗(CPn) ∼= Z[[H]]

[H]n+1
∼=
⊕
0≤t≤n

Z[H]t,

where Z[[H]] is the polynomial ring generated by [H].

The Chow ring shares a nice property with the usual cohomology ring. Given a degree-d
hypersurface F = 0 in Pn, the class of the hypersurface [F = 0] is equivalent to d[H], where H
is a hyperplane in Pn. To see this, define a map φ : Pn → P1 by φ(x) = [F (x) : L(x)d], where
L = 0 is the equation of a hyperplane. Then φ−1([0 : 1]) = {F = 0} and φ−1([1 : 0]) = {Ld = 0}.
So {F = 0} is rationally equivalent to {Ld = 0}, i.e. [F ] = [Ld] = d[H]. If F1 = 0, . . . , Fn = 0
are hypersurfaces of degrees d1, . . . , dn in Pn that intersect transversely (that is, at each point of
intersection p the tangent spaces to the hypersurfaces intersect only at p), then

[{F0 = 0 ∩ F1 = 0 ∩ · · · ∩ Fn = 0}] = [F0 = 0][F1 = 0] . . . [Fn = 0]

= (d1[H])(d2[H]), . . . , (dn[H])

= d1d2 . . . dn[H]n.

Since n hyperplanes in CPn intersect transversely in a point, [H]n represents a point in CPn, so
we expect these hypersurface to intersect in d1d2 . . . dn points. This is the content of Bézout’s
Theorem.



33

Theorem 4.0.7 (Bézout’s Theorem). If n hypersurfaces F1 = 0, . . . , Fn = 0 of degrees d1, . . . , dn
in Pn intersect transversely, then the hypersurfaces intersect in d1d2 · · · dn points.

This theorem is critical to enumerative results, because it allows us to count intersections by
computing in the cohomology ring.

Recall that P2∗ is the moduli space of lines in P2 and the product (P2∗)` is the moduli space of
labeled arrangements of ` lines in P2. Since P2∗ is isomorphic to P2, their cohomology rings are
also isomorphic. Thus, using Example 2.2.13, the Chow ring of (P2∗)` is

A∗((P2∗)`) =
Z[x1, x2, . . . , x`]

(x31, x
3
2, . . . , x

3
`)
,

where xi corresponds to the class of a hyperplane in the ith copy of P2∗.

4.1 The Intersection Polynomial

The intersection polynomial of an arrangement is an element of the Chow ring. The intersection
polynomial is of the form (x1 + x2 + · · ·+ x`)

d ∗PL(x1, x2, . . . , x`), where PL(x1, x2, . . . , x`) is a
polynomial based on the intersection lattice type L = L(A) of an arrangement A of ` hyperplanes
through d points. The reason the intersection polynomial is so useful to us is that the coefficient of
the top class of the polynomial x21x

2
2 · · ·x2` represents the number of labeled arrangements with our

lattice type and satisfying the geometric conditions. After computing this number, we can divide
by the size of the appropriate symmetry group to obtain our desired count. Since the quotient
of the Chow ring is generated by (x31, x

3
2, . . . , x

3
`), there is no term in the intersection polynomial

containing a variable raised to the third (or higher) power. Therefore, the term in which every xi
is at its maximum degree is x21x

2
2 · · ·x2` . As we said earlier, these xi are classes in the Chow ring

of (P2∗)`, so they each represent the class of a hyperplane in the ith copy of P2∗. The product of
two such classes is the class of a point in the ith copy of P2∗. The term x21x

2
2 · · ·x2` corresponds

to imposing restrictions on each factor in (P2∗)` so that the resulting class represents a point in
the product (P2∗)`, that is, a labeled arrangement of ` lines. To obtain the number of unlabeled
arrangements, we simply divide this number by the size of the symmetry group, which can be
computed with the symmetries program found in Appendix A.

We must be very careful in determining PL(x1, x2, . . . , x`). This factor in the polynomial
corresponds to the multi-intersections (triple points, quadruple points, etc.) in the arrangement and
is vital to obtaining an accurate count. Let A be an arrangement of ` hyperplanes in P2. Note that
if lines L1, L2, and L3 intersect in a common point, then they each represent planes in C3 that
intersect in a common line. If the equation defining line Li is given by aix + biy + ciz = 0 (for



34

i ∈ {1, 2, 3}), then the planes share a common line if and only if the matrix

M1,2,3 =

a1 b1 c1

a2 b2 c2

a3 b3 c3


has a determinant equal to zero. This determinant equation is a degree-3 polynomial in the nine
variables a1, a2, a3, b1, . . . , c3. In fact, it is a multihomogeneous polynomial in the sense that each
term in the polynomial involves one variable with index 1, one variable with index 2, and one
variable of index 3. The zero set of such a polynomial is rationally equivalent to the zero set of any
of its terms, for example, a1b2c3. The zero set of such a polynomial is a union of three hyperplanes
(a1 = 0, b2 = 0, and c3 = 0). Since the class of a union is the sum of the classes in the Chow ring,
the class of such a hypersurface in the Chow ring is x1+x2+x3. Similarly, if distinct lines i, j, and
k meet in a triple point, then the corresponding class of this geometric condition is xi + xj + xk.

To ensure that an arrangement passes through a fixed point p = [x0 : y0 : z0] we need one of
the lines in the arrangement (aix + biy + ciz = 0 for i ∈ {1, 2, . . . , `}) to pass through p. This is
equivalent to requiring that ∏

1≤i≤`

(aix0 + biy0 + ciz0) = 0.

This is a multihomogeneous polynomial as well, so the zero set of the polynomial is rationally
equivalent to the zero set of any of its terms, such as a1a2 . . . a`. In this case, the zero set is a union
of ` hyperplanes (a1 = 0,a2 = 0, . . . , a` = 0). The class of such a hypersurface in the Chow ring is
x1+x2+ · · ·+x`. Imposing d independent point conditions produces the term (x1+x2+ · · ·+x`)d
in the intersection polynomial for an arrangement.

To better illustrate this point, we look at a few examples, for which we already know the count
from combinatorics.

Example 4.1.1. Let A be a generic arrangement of 4 lines through 8 points in general position in
P2. There are no triple points inA, so there are no determinantal conditions that must be accounted
for in the intersection polynomial. Therefore, the intersection polynomial of this intersection lattice
is (x1 + x2 + x3 + x4)

8. Using SAGE, we take the partial derivative of this polynomial twice with
respect to each xi, and then divide by 2` = 24 to determine that the coefficient of x21x

2
2x

2
3x

2
4 is

2520. As we already know, the size of the symmetry group for generic arrangements is `!, so we
divided 2520 by 4! to determine that there are 2520

4!
= 105 generic arrangements of 4 lines through

8 points in general position in P2. This matches up exactly with the number we obtained using
combinatorics.

Example 4.1.2. LetA be a pencil of 4 lines through 6 points in general position in P2. By virtue of
the intersection lattice, all 4 lines in A meet at a single point, so there are

(
4
3

)
possible collections

of three lines that we could say meet in a point. However, we don’t need that many determinantal
conditions to force the lines to meet in a quadruple point. It is sufficient to say, for example,
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that L1, L2, and L3 meet in a triple point, and L2, L3, and L4 meet in a triple point, because
then all other combinations of three lines are forced to intersect at a single point. Therefore,
any two such collections of three lines may be used for the determinantal conditions. Using the
two collections I suggested earlier, we can create the intersection polynomial for this intersection
lattice: (x1 +x2 +x3)(x2 +x3 +x4)(x1 +x2 +x3 +x4)

6. We take the derivative of this polynomial
in the same manner as before to find that the coefficient of x21x

2
2x

2
3x

2
4 is 1440. At this point, it is

tempting to divide by the size of the symmetry group (4!) and claim that there are 60 pencils of 4
lines through 6 points in general position; however, as we know from combinatorics, this isn’t true.
This is an example of why we must be careful in our interpretation of results from the intersection
polynomial. The coefficient of x21x

2
2x

2
3x

2
4 counts all arrangements that contain d points and satisfy

the determinantal conditions imposed by the intersection polynomial, not just the arrangements
with a particular intersection lattice. In this case, arrangements made up of two equal lines and
two generic lines are also included in the intersection polynomial. If L2 = L3, then we still satisfy
the two tripe-points conditions in the intersection polynomial because det(M1,2,3) = 0, but our
arrangement is no longer a pencil, because L1 and L4 do not meet on L2 = L3, as depicted in
Figure 13.

1

2=3

4

Figure 13: Arrangement with a double line L2 = L3

Therefore, we must calculate the number of such arrangements, and take into account any mul-
tiplicity these arrangements have in (P2∗)`. There are

(
6
2

)(
4
2

)(
2
2

)
= 90 double-line arrangements

that must be removed, each of which counts with multiplicity 4. The computation for determining
the multiplicity of an arrangement is conducted by a complicated computer algorithm whose con-
tents are otherwise irrelevant to this project. See Fulton [6, Chapter 1] for theoretical details and
Smith and Sturmfels [23] for ways to implement the computation in Macaulay2. This means that
the accurate number of labeled pencils of 4 lines is 1440 − 4(90) = 1080. Dividing 1080 by the
number of relabelings (4! = 24), we get 1080

24
= 45 unlabeled pencils of 4 lines, the same count we

calculated using combinatorics.
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5 The Tutte Polynomial

The Tutte polynomial is a multivariate polynomial that encodes the dependent sets of a matroid
(see Sokal [25]). The equation for the Tutte polynomial of a hyperplane arrangement with matroid
M , ground set E, and number of lines ` = |E| is

Z̃M(q, v̄) =
∑
A⊆E

(q−r(A))
k∏
j=1

(vj)

, where v̄ = (v1, v2, . . . , v`), A = {`1, `2, . . . , `k} ⊆ E, and r(A) = codim(`1 ∩ `2 ∩ · · · ∩ `k). We
have found that it is more convenient to work with a slight variation of the Tutte polynomial,

ZM(q, v̄) = Z̃M(q−1, v̄),

which for simplicity we just call the Tutte polynomial.

For example, consider the arrangement of three lines in general position. The Tutte polynomial
of the intersection lattice of this arrangement is

ZM(q, v̄) = 1 + q(v1 + v2 + v3) + q2(v1v2 + v1v3 + v2v3) + q3(v1v2v3).

A quick glance at this polynomial can tell you the intersection information of our arrangement.
The factors of any terms with a coefficient of q1 intersect in a line (in P2, a codimension 1 object),
those with a coefficient of q2 in a point (in P2, a codimension 2 object), and those with a coefficient
of q3 intersect in the empty set (in P2, a codimension 3 object), which means they don’t intersect at
all. In this case, our Tutte polynomial exactly reflects the intersections of the arrangement, because
every combination of two lines intersects at a point, but all three lines do not intersect.

Since the Tutte polynomial of the intersection lattice of an arrangement A contains all the
intersection data ofA, it seems plausible that the polynomial could be used to compute the number
of arrangements going through d points in general position, where d is chosen appropriately so
that the answer is finite and nonzero. One possibility is that this count equals the evaluation of
ZM(q, v̄) at a suitable q and v̄. When q = 1, the Tutte polynomial simplifies nicely to ZM(1, v̄) =∏

e∈E(1 + ve). This means that if we find a regular pattern in the factors of an arrangement count
for a changing number of lines, we can find the values of v̄ with q = 1. If you look at the number
of unlabeled arrangements in generic position, you see that the count is 15 = 1× 3× 5 for ` = 3,
105 = 1× 3× 5× 7 for ` = 4, 945 = 1× 3× 5× 7× 9 for ` = 5, and so on. The pattern here is,
for ` lines, the count is 1× 3× 5× · · · × (2`− 1) = (2`− 1)!!.

Theorem 5.0.3. Let A be a generic arrangement of ` lines through 2` points in general position
in P2. The number of arrangements passing through these 2` points in general position is equal to

ZM(1, (0, 2, 4, . . . , 2`− 2)) = (2`− 1)!!.
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Proof. Let A be an arrangement satisfying the conditions in Theorem 5.0.3. As we proved in
Theorem 3.1.2, the number of such arrangements is equal to

(2`)!

`!2`
=

(2`)(2`− 1)(2`− 2)(2`− 3) · · · (3)(2)(1)

2`(`)(`− 1)(`− 2)(`− 3) · · · (3)(2)(1)

=
(2`)(2`− 1)(2`− 2)(2`− 3) · · · (3)(2)(1)

(2`)(2`− 2)(2`− 4)(2`− 6) · · · (6)(4)(2)

= (2`− 1)(2`− 3) · · · (5)(3)(1) = (2`− 1)!!.

Let v̄ = (0, 2, 4, . . . , 2`− 2). Evaluated at v̄, the Tutte polynomial is

ZM(1, v̄) = (1 + 0)(1 + 2)(1 + 4) · · · (1 + (2`− 2))

= 1(3)(5) · · · (2`− 1) = (2`− 1)!!.

Therefore, the number of generic arrangements of ` lines through 2` points in general position is
equal to ZM(1, (0, 2, 4, . . . , 2`− 2)).

We have also analyzed the Tutte polynomials of pencils of lines.

Theorem 5.0.4. Let A be a pencil of ` lines through ` + 2 points in general position in P2. Then
the number of distinct arrangements A through the `+ 2 points is equal to (k+ 1)(2k+ 1), where

k =

{
`2+`−4

4
if ` = 0 mod 4 or 3 mod 4

− `2+`+2
4

if ` = 1 mod 4 or 2 mod 4

}

Proof. Fix the intersection type of our arrangement A of ` lines to be the pencil. From Theorem

3.1.4, we know there are (`+2
2 )(`

2)
2

distinct arrangements with this intersection type through ` + 2
points in general position. Let the number of lines ` be equal to 4n or 4n+3 for some non-negative
integer n. Then the proposed count from Theorem 5.0.4 is

(
`2 + `− 4

4
+ 1)(2(

`2 + `− 4

4
) + 1) = (

`2 + `

4
)(
`2 + `− 2

2
)

=
(`+ 1)(`)(`+ 2)(`− 1)

8
=

(`+ 2)!(`)!

2(`!)2 ((`− 2)!) (2)
=

(
`+2
2

)(
`
2

)
2

.

Now let the number of lines be equal to 4n + 1 or 4n + 2 for some non-negative integer n. By
Theorem 5.0.4, the count is

(−`
2 + `+ 2

4
+ 1)(2(−`

2 + `+ 2

4
) + 1) = (

−`2 − `+ 2

4
)(
−2`2 − 2`

4
)

= (
`2 + `− 2

4
)(
`2 + `

2
) =

(
`+2
2

)(
`
2

)
2

.
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We have found that using the Tutte polynomial to calculate the count for other lattice types
is more difficult, because no pattern is apparent. We have written a computer program in Sage
that takes a matrix, the columns of which represent the coefficients of line equations for the ar-
rangement, calculates the independent sets, and outputs the Tutte polynomial for the intersection
type. We have also written a program that takes the Tutte polynomial, the arrangement count, and
bounds for q and the vi, and outputs all solutions to the polynomial equal to the count within the
given bounds. These functions can be found in Appendix A. This program may be able to provide
some insight into the connection between the finite, nonzero number of arrangements of a given
lattice intersection type and that intersection type’s Tutte polynomial, but as of this writing we have
been unable to find such a precise formula.

6 The Braid Arrangement

The main result of this paper is solving the enumerative problem for a very interesting but compli-
cated intersection lattice type - the braid arrangement.

Definition 6.0.5. Let V be an n-dimensional vector space, and let

Hij = {(v1, v2, . . . , vn) ∈ V |vi = vj}

for 1 ≤ i < j ≤ n. We define the braid arrangement to be

An = {Hij|1 ≤ i < j ≤ n}.

We focus our attention on an arrangement related to A4, which we will also call the “braid ar-
rangement” in this paper. To obtain this arrangement, note that the line L = {(v1, v2, v3, v4) : v1 =
v2 = v3 = v4} is contained in each hyperplane Hij ∈ A4. Moding out this line (i.e. intersecting
with the hyperplane v1 + v2 + v3 + v4 = 0) gives an arrangement in C3 which determines the braid
arrangement in P2. Figure 14 on the next page illustrates two example of braid arrangements, when
viewed in the projective plane P2. As we can see, the braid arrangement in P2 contains four triple
points, with each of the six lines containing two triple points.

As with the solutions to all of our enumerative problems, the first step is to find how many
points d must be fixed in general position in order to get a finite nonzero number of arrangements.
We claim that this number is 8.

Theorem 6.0.6. There is a finite nonzero number of braid arrangements through 8 points in general
position in P2.

Proof. Let d < 8. Recall our proof that the number of points that must be fixed in general position
to get a finite nonzero number of generic arrangements must be 2`. In that situation, if d < 2`, we
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Figure 14: Two arrangements with the lattice type of the braid arrangement of 6 hyperplanes in P2.

get an infinite number of possible generic arrangements. This is analogous to the case of the braid
arrangement when d < 8, because four of the lines in the braid arrangement are in general position.
In our standard picture of the braid arrangement, these are the first four lines that are placed. When
d < 8, we can place these first four lines in an infinite number of ways, so when we add the last
two lines (joining pairs of the

(
4
2

)
= 6 double points to produce 4 triple points) we get an infinite

number of possible braid arrangements. Therefore, when d < 8 the number of braid arrangements
is infinite. Now, let d > 8. We can fix the first four lines without issue through 8 of the points in
general position, with some number of points left over. If there are more than 4 points remaining,
we get 0 possible braid arrangements, because there is no way the last two lines can each contain
more than two points in general position. If there are 4 points remaining, the resulting arrangement
after placing the last two lines is a generic arrangement, not a braid arrangement. In the case with 3
left over points, one of the last two lines must contain two by the pigeon hole principle. This means
that we have five lines in general position. The braid arrangement, by definition, has four triple
points in it. This means that the last line would have pass through the final point and four of the
intersections of the five generic lines. This is impossible, so the number of braid arrangements is
0. Assume now that we have 2 points for the last two lines. If one of the lines contains both points,
we are able to use the same argument as above to say that the final line cant pass through four
intersection points. If instead each line contains one of the points in general position, we would
still have to be able to put a line through a general point and two of the intersection points of the
four generic lines. Because the points are in general position, this will never occur, so the number
of arrangements is again 0. We are left at last with the case d = 9. One of the last two lines can be
placed through two of the intersections of the four generic lines, creating two triple points. At this
point we are confronted with the same problem as before: putting a line through a point in general
position and two intersection points of generic lines. As we said earlier, this cannot be done by
definition of general position, making it impossible to obtain any braid arrangements. This means
that when d > 8, there are 0 braid arrangements that can be created. Therefore, to get a finite
nonzero number of braid arrangements, we must fix 8 points in general position in P2.
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Now that we know the number of points required, and therefore the dimension of the mod-
uli space, we can begin to solve the enumerative problem in earnest. To do this, we use both
combinatorics and the intersection polynomial, and then compare the results.

6.1 Intersection Polynomial

The construction of the intersection polynomial for the braid arrangement is relatively simple.
First, we assign labels to the lines.

1 2

3

4

56

Figure 15: Braid Arrangement with hyperplanes labeled

In the braid arrangement, we wish to impose four triple point conditions, and the corresponding
class of all four geometric conditions is just the product (x1 + x3 + x6)(x2 + x3 + x5)(x2 + x4 +
x6)(x1 + x4 + x5). As well, to ensure that the braid arrangement passes through a fixed point
p = [x0 : y0 : z0] we need one of the six lines (aix + biy + ciz = 0 for i ∈ {1, 2, . . . , 6}) to pass
through p. This is equivalent to requiring that∏

1≤i≤6

(aix0 + biy0 + ciz0) = 0.

Again this is a multihomogeneous polynomial. The zero set of such a polynomial is rationally
equivalent to the zero set of any of its terms, for example, a1a2 . . . a6. The zero set of this kind of
polynomial is a union of six hyperplanes (a1 = 0,a2 = 0, . . . , a6 = 0). Since the class of a union
is the sum of the classes in the Chow ring, the class of such a hypersurface in the Chow ring is
x1+x2+ · · ·+x6. Imposing 8 independent point conditions produces the term (x1+x2+ · · ·+x6)8
in the intersection polynomial for the braid arrangement.

The intersection polynomial for the braid arrangement is thus

(x1 + x3 + x6)(x2 + x3 + x5)(x2 + x4 + x6)(x1 + x4 + x5)(x1 + x2 + · · ·+ x6)
8.
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Now we find the coefficient of x21x
2
2x

2
3x

2
4x

2
5x

2
6, which we do by taking the double derivative

of the polynomial with respect to each xi and then divide by 26. The reason we take this par-
ticular derivative is because x21x

2
2x

2
3x

2
4x

2
5x

2
6 is the only term in the polynomial that will not be-

come 0 after taking all of these derivatives. In all of the other terms, one of the six xi will
have an exponent less than 2, and when the second derivative of that variable is taken that term
will become 0. We divide by 26 because as you take the derivatives with respect to each of the
six variables, the exponent drops down and increases the coefficient by a factor of two. After
taking the derivatives, we get that the coefficient of x21x

2
2x

2
3x

2
4x

2
5x

2
6 is 35320320

26
= 551880. We

also need to calculate the symmetry group of the intersection polynomial. Using the symme-
try group function described in Appendix A, we find that there are 24 different permutations
of the line labels that preserve the intersection polynomial. While there are 6! possible ways
to label 6 lines, only 24 of these labelings ensure that the collections of three lines comprising
the four triple points remain the same. If we labeled the lines with one of the other permuta-
tions, we could go from having triple points (L1, L3, L6), (L2, L3, L5), (L2, L4, L6), (L1, L4, L5)
to (L1, L4, L6), (L2, L3, L4), (L1, L3, L5), (L2, L5, L6), so the permutation is not a member of the
symmetry group. So, we get 551880

24
= 22995 unlabeled arrangements. We expect to get the number

of unlabeled arrangements (as opposed to labeled) because we divided by the number of possible
different labelings, which eliminates overcounting. In this case, however, 22995 is not the num-
ber of unlabeled braid arrangements. There is another intersection type that satisfies the criteria
imposed by the intersection polynomial, and we must subtract the number of arrangements of that
type. The pencil of six lines is dimension 8, because for the pencil d = ` + 2, and each of the
triple point conditions (det(M1,3,6) =det(M2,3,5) =det(M2,4,6) =det(M1,4,5) = 0) is met, because
all lines in a pencil intersect at a single point. This is one of the dangerous parts of using the
intersection polynomial: it encodes some intersection information that must be true about the ar-
rangement, such as det(Mi,j,k) = 0, but doesn’t necessarily include all of that information (e.g. it
doesn’t encode det(Mi,j,k) 6= 0).

We must be careful to ensure that all extraneous lattice types contained in the count (in this
case, 551880) are removed. For an intersection lattice type to be contained in this count, it must
contain 6 lines, have dimension 8, and meet all of the triple point conditions set in the intersection
polynomial. This does not necessarily mean that arrangements of this intersection type contain four
triple points. As we see with the pencil, as long as the appropriate collections of three lines meet
in a point, they are contained in the intersection polynomial count. Another important property of
the braid arrangement that must be met by other arrangements, if they are included in the count,
is that every line in the arrangement contains the intersections of two distinct pairs of lines. These
intersection points may or may not be coincident. Comparing these criteria against the list of 10
possible intersection lattice types of 6 lines, which we have generated explicitly, the only types that
satisfy all of them are the braid arrangement and the pencil. Therefore, the pencil of 6 lines is the
only extraneous lattice type that is included in the count from the intersection polynomial, so we
must subtract the number of labeled 6-pencils from 551880.

As stated in Theorem 3.1.4, the number of unlabeled arrangements of a pencil of ` lines is
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(`+2)!
23(`−2)! , so for six lines there are 8!

23(4!)
= 210 unlabeled arrangements. We want to know the

number of labeled arrangements, because 551880 was the number of labeled braid arrangements.
To get this, we multiply 210 by 6!, the number of different ways to label six lines. After doing
this, we get 210 ∗ 720 = 151200. So the actual number of labeled braid arrangements is 551880−
151200 = 400680, which leads us to our main result.

Theorem 6.1.1 (Main Result). The number of unlabeled braid arrangements through 8 points in
P2 is 400680

24
= 16695.

This problem is a good illustration of how to use the intersection polynomial, and demonstrates
some its potential pitfalls. Despite some of these small problems, we will see in the next section
that the intersection polynomial is far cleaner than the combinatorial methods used to verify 16695.

6.2 Combinatorics

Just as we saw in the tie-fighter example, it is necessary to determine all of the various ways to
construct an arrangement to ensure an accurate combinatorial count. With the braid arrangement,
this is even more difficult. First, we looked at how many ways there are to partition 8 points
(the dimension of the braid arrangement) into 6 bins (each representing the number of points on
a particular line). There are three ways to do this: [2, 2, 2, 2, 0, 0], [2, 2, 2, 1, 1, 0], [2, 2, 1, 1, 1, 1].
Finding arrangements of the first two types is relatively straightforward:

Figure 16: Braid Arrangements, [2, 2, 2, 2, 0, 0] on left and [2, 2, 2, 1, 1, 0] on right

The count for the [2, 2, 2, 2, 0, 0] arrangements, illustrated on the left in Figure 16, is constructed
using similar methods to arrangements in general position. The four lines through two points are
generic (so their labels can be swapped), and the final two lines are chosen through pairs of double
points created by the four generic lines (the labels on these two lines may be exchanged too),
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making the count (
8
2

)(
6
2

)(
4
2

)(
2
2

)(
3
1

)(
2
1

)
4!2

= 315.

To compute the number of [2, 2, 2, 1, 1, 0] arrangements, on the right, we first place three generic

lines through two points each, contributing a factor of (8
2)(

6
2)(

4
2)

3!
. The next two lines each go through

one point in general position and a double point of lines in the arrangement. The final line then
passes through two double points of the arrangement. There are a number of different ways to do
this. For example, when placing the fifth line, we want to account for cases in which the double
point it goes through is an intersection of one of the three original generic lines, as well as cases
in which the double point was created after placing the fourth line. After drawing out all possible
distinct ways to place the last three lines, which was a painstaking process, we determined that the
final three lines contribute a factor of 24 to the count, after removing overcounting. Therefore, the
number of [2, 2, 2, 1, 1, 0] braid arrangements is(

8
2

)(
6
2

)(
4
2

)
3!

∗ 24 = 10080.

The final category of construction for the braid arrangement is [2, 2, 1, 1, 1, 1]. This case in-
troduced to us for the first time the possibility of having a line that, when first placed in the ar-
rangement, doesn’t have a fixed slope. Instead, we choose one of the generic points and assign to
that point a line with a variable slope. After we’ve finished constructing the arrangement, we vary
the slope of this line until we get an arrangement that is of the desired intersection type. Some-
times there is only one slope of the line that gives the appropriate intersection type, but other times
there is more than one that does, or slopes that make arrangements of other interesting intersection
types, like a pencil. To visualize these cases, we have made use of Geogebra [14], which allows
us to vary the slope of the line and watch how the intersection type of the arrangement changes.
When constructing arrangements with a variable-slope line, we label this line s to distinguish it
from the others. Figure 17 at the top of the next page shows an example of a [2, 2, 1, 1, 1, 1] braid
arrangement with a variable-slope line s, before and after finding the correct value for s.

The first step to constructing this arrangement is to make two generic lines through two points
each, and then make a third line through one point and the intersection of the first two lines. The
lines in the figure above are labeled in this order. Next, the line with variable slope s is placed
through one of the remaining three points. The fifth line is through one of the last two points and
one of the three double points in the arrangement (the intersections of the variable-slope line and
the three previous lines) and the sixth line through one of the four resulting double points. Then,
we vary s until the three lines around A in the figure above meet at a triple point. The labels on
the first two lines are interchangeable, for an overcount of two, as are the label on the last three
lines, for an overcount of 3! = 6. Also, there are only two possible combinations of the the last
four double points that result in a braid arrangement, so the last line only counts for a factor of 2,

not 4. Therefore the count for this type of arrangement is (8
2)(

6
2)(

4
1)(

3
1)(

2
1)(

3
1)(

2
1)

2(3!)
= 5040.
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3
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1 4(s)
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1 4(s)
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A

Figure 17: Constructing a braid arrangement with a variable-slope line by making A a triple point

There is another way to construct a [2, 2, 1, 1, 1, 1] braid arrangement, with two variable-slope
lines s and t, which itself breaks down into multiple different constructions. The multiple sub-
constructions are due to the fact that braid arrangements can be obtained from having the fifth and
sixth lines meet at a triple point, or not. To clarify, Figure 18 illustrates examples of each of these
sub-constructions.

6
1 2

3(s)

5

4(t)

1 2

3(s)

5

6

4(t)

Figure 18: Constructing a braid arrangement with two variable-slope lines

In the figure on the left, lines 5 and 6 intersect at a double point, but in the figure on the
right, they meet line 2 in a triple point. As before, the labels on the first two lines are inter-
changeable, but in this case all of the last four lines can be picked in any order, giving them an
overcount of 4! = 24. All together, this two variable-slope construction has the following count:
(8
2)(

6
2)(

4
1)(

3
1)[(

2
1)(

2
1)+(2

1)(
2
1)[1+1]]

2∗4! = 1260.
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This accounts for all of the cases for the braid arrangement, so our final combinatorial count is
315 + 10080 + 5040 + 1260 = 16695. This matches the count we got using intersection theory, so
we are confident that this is the number of braid arrangements of six lines through eight points in
general position.

6.3 Moduli Spaces of Braid Arrangements

Rimányi et al. [22] investigated the moduli space of braid arrangements as follows.

Let A be an n × ` matrix. The number of columns of A,`, is the number of lines in our
arrangement, and the number of rows of A,n, is the dimension of the ambient space. A represents
one particular arrangement of ` lines, with each column giving the coefficients of a line in P2. Let
r be a function that takes elements of the power set of {1, 2, . . . , `} to Z. Let X = {A ∈ Mn×` :
rank(subset I of columns) = r(I)}. Let C be a specific line arrangement {v1, . . . , v`}. Then XC

denotes the moduli space of the arrangement C, XC ⊆ Cn`. YC = XC is the closure of XC in Cn`.
Let’s look at an example - the braid arrangement.

C =

 1 1 0 1 1 0

0 1 1 0 −1 1

0 −1 0 −1 0 −1


In this matrix, the columns represent the line equations of each of the six lines in the braid

arrangements. We label the columns from 1 to 6 such that the corresponding lines L1, L2, . . . , L6

meet at the following triple points:

{L1L2L6}, {L1L3L5}, {L2L3L4}, {L4L5L6}.

Now we want to construct XC . XC satisfies all of the rank conditions that subsets of the columns
of C must satisfy to be a braid arrangement. So in this example, XC = { subset I of columns of
C|r(∅) = 0, r({i}) = 1, r({ij}) = 2, r({1, 2, 6}) = r({1, 3, 5}) = r({2, 3, 4}) = r({4, 5, 6}) =
2, r(other {ijk}) = 3, r(others) = 3}. These conditions force any two lines to intersect in a point
(obvious because we’re in projective space), four triples of lines to intersect in the triple points,
and any other combination of three or more lines to intersect in the empty set. The r({ij}) =
2 condition is satisfied by showing that at least one 2 × 2 minor of every pair of lines is not
equal to 0. This is the same with the 3 × 3 minors of subsets of three or more non-triple point
columns. To ensure that the triple points have rank 2, we want the determinants of the 3 × 3
matrices M1,2,6,M1,3,5,M2,3,4, and M4,5,6 to be zero.

We call the set cut out exclusively by the degree 3 triple point conditions the “naive” clo-
sure or Ynaive. We create Ynaive by only specifying the determinant conditions which require a
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matrix to have determinant equal to 0. So for the braid arrangement, that is Ynaive = {M ∈
C3(6)|det(M1,2,6) = det(M2,3,4) = det(M4,5,6) = det(M1,3,5) = 0}. It is tempting to think that YC
equals the closure of XC , but it can be observed quickly that this is not the appropriate closure for
the moduli space XC of the braid arrangement. Pencils of six lines, as we have already remarked,
also satisfy these conditions, so they are part of YC .

Rimányi et al. point out that Ynaive can be thought of as YCM
∪{M ∈ C3(6)|r(M) <= 2}, where

YCM
is the appropriate closure of the moduli space of the braid arrangement. Rimányi et al. con-

tinue to say that, using computer algebra, he obtained 19 minimal generators for the ideal ICM
of

YCM
. In addition to the four degree 3 polynomials that make up Inaive = (det(M1,2,6), det(M2,3,4),

det(M4,5,6), det(M1,3,5)), Rimányi et al. claim ICM
also contains three degree 5 polynomials and

twelve degree 6 polynomials. They demonstrate how they arrive at these polynomials, with the
degree 5 polynomials coming from taking the sum of three of the degree 6 polynomials, pulling
out a common factor, and taking that variable to be at infinity in the projective plane. For example,
here are the three degree 6 polynomials that Rimányi et al. use to make a degree 5 polynomial:

z5/y5 − z1/y1
z3/y3 − z5/y5

· z4/y4 − z3/y3
z2/y2 − z4/y4

· x6/y6 − x2/y2
x1/y3 − x6/y5

= −1,

x1/y1 − x2/y2
x2/y2 − x6/y6

· z6/y6 − z4/y4
z4/y4 − z5/y5

· z5/y5 − z3/y3
z3/y3 − z1/y1

= −1,

z1/y1 − z2/y2
z2/y2 − z6/y6

· z6/y6 − z4/y4
z4/y4 − z5/y5

· x5/y5 − x3/y3
x3/y3 − x1/y1

= −1.

The sum of these three degree 6 polynomials is

y4(−x5y1z3z6y2 + x5y1z3z2y6 + x3y1z2z1y6 − x5y3z2z1y6 + z1y5z3x6y2−
z1y5z3x2y6z3y5z2x6y1 + z5y3z2x6y1 + x2y1z6z3y5 − x2y1z6z5y3 − x6y2z5z1y3+

x2y6z5z1y3 − z1y2z6x3y5 + z1y2z6x5y3 + z6y2z5x3y1 − z2y6z5x3y1).
Earlier in their paper, Rimányi et al. say that “in the projective plane (x, y, z) we can choose the
y coordinate to be at infinity” ([22, page 6]). Because of this, they remove the y4 factor entirely,
resulting in a degree 5 polynomial that they claim is one of the minimal generators of ICM

.

This method raised a number of questions in our minds. First, why are those three particular
degree 6 polynomials chosen to be added? There are twelve degree 6 polynomials and only three
degree 5 ones, so that means at least three of the degree 6 polynomials won’t be used at all to make
a degree 5 polynomial. Also, when Rimányi takes the y variable to be at infinity, why can we
ignore y4 (treat it as if it were 1) but still include the other yi? It seems that if we assume y = 1
then this “degree 5” polynomial is in fact a degree 3 polynomial. We studied these questions using
the computer algebra SAGE.

We begin by creating a matrix with our 18 variables: 1

1SAGE code is printed in typewriter font and output is printed in italics.
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M = matrix{{a1, a2, a3, a4, a5, a6},{b1, b2, b3, b4, b5, b6},{c1, c2, c3, c4, c5, c6}}

Next we create the “naive” ideal generated solely by the four degree 3 polynomials, which
correspond to the four triple points on the arrangement:

D126 =det(matrix{{a1, a2, a6},{b1, b2, b6},{c1, c2, c6}}),
D135 =det(matrix{{a1, a3, a5},{b1, b3, b5},{c1, c3, c5}}),
D234 =det(matrix{{a2, a3, a4},{b2, b3, b4},{c2, c3, c4}}),
D456 =det(matrix{{a4, a5, a6},{b4, b5, b6},{c4, c5, c6}}),
J = ideal(D126, D135, D234, D456)

J = ideal(−a6b2c1 + a2b6c1 + a6b1c2 − a1b6c2 − a2b1c6 + a1b2c6,−a5b3c1 + a3b5c1 + a5b1c3 −
a1b5c3−a3b1c5 +a1b3c5,−a4b3c2 +a3b4c2 +a4b2c3−a2b4c3−a3b2c4 +a2b3c4,−a6b5c4 +a5b6c4 +
a6b4c5 − a4b6c5 − a5b4c6 + a4b5c6)

We know this is the “naive” ideal because it includes many arrangements that are not braid
arrangements. To remove these unwanted arrangements, we use the ideal quotient or “colon ideal.”
The zero set of the colon ideal can be interpreted as the set difference between two ideals (actually,
the difference is not of sets, but of schemes [4], but this level of detail will not concern us here).
We want to remove the pencils, so we create an ideal made up of all the 3 × 3 minors of M and
then take the colon ideal of J with ideal of the minors.

At this point, we have an ideal generated by fourteen polynomials. There are the four degree 3
polynomials that we expect, as well as ten degree 6 polynomials.

MM = minors(3,M)
F1 = b3b5b6c1c2c4− b2b5b6c1c3c4− b3b4b6c1c2c5 + b1b− 4b6c2c3c5 + b2b3b6c1c4c5− b1b3b6c2c4c5 +
b2b4b5c1c3c6 − b1b4b5c2c3c6 − b2b3b5c1c4c6 + b1b2b5c3c4c6 + b1b3b4c2c5c6 − b1b2b4c3c5c6
F2 = a3b5b6c1c2c4 − a2b5b6c1c3c4 − a3b4b6c1c2c5 − a4b2b6c1c3c5 + a2b4b6c1c3c5 + a4b1b6c2c3c5 +
a3b2b6c1c4c5 − a3b1b6c2c4c5 + a4b2b5c1c3c6 − a4b1b5c2c3c6 − a3b2b5c1c4c6 + a2b1b5c3c4c6 +
a3b1b4c2c5c6 − a2b1b4c3c5c6
F3 = a3a5b6c1c2c4−a2a5b6c1c3c4−a3a4b6c1c2c5 +a1a4b6c2c3c5 +a2a3b6c1c4c5−a1a3b6c2c4c5 +
a4a5b2c1c3c6 − a4a5b1c2c3c6 − a3a5b2c1c4c6 + a2a5b1c3c4c6 + a3a4b1c2c5c6 − a1a4b2c3c5c6 −
a2a3b1c4c5c6 + a1a3b2c4c5c6
F4 = a3a5a6c1c2c4−a2a5a6c1c3c4−a3a4a6c1c2c5+a1a4a6c2c3c5+a2a3a6c1c4c5−a1a3a6c2c4c5+
a2a4a5c1c3c6 − a1a4a5c2c3c6 − a2a3a5c1c4c6 + a1a2a5c3c4c6 + a1a3a4c2c5c6 − a1a2a4c3c5c6
F5 = a5b1b3b6c2c4 − a1b3b5b6c2c4 − a5b1b2b6c3c4 + a1b2b5b6c3c4 − a3b1b4b6c2c5 + a1b3b4b6c2c5 +
a3b1b2b6c4c5 − a1b2b3b6c4c5 − a5b1b3b4c2c6 + a3b1b4b5c2c6 + a5b1b2b4c3c6 − a1b2b4b5c3c6 −
a3b1b2b5c4c6 + a1b2b3b5c4c6
F6 = a3a5b1b6c2c4− a1a3b5b6c2c4− a2a5b1b6c3c4 + a1a2b5b6c3c4− a3a4b1b6c2c5 + a1a3b4b6c2c5 +
a1a4b2b6c3c5 − a1a2b4b6c3c5 + a2a3b1b6c4c5 − a1a3b2b6c4c5 − a3a5b1b4c2c6 + a3a4b1b5c2c6 +
a2a5b1b4c3c6 − a1a4b2b5c3c6 − a2a3b1b5c4c6 + a1a3b2b5c4c6
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F7 = a3a5a6b1c2c4−a1a3a5b6c2c4−a2a5a6b1c3c4+a1a2a5b6c3c4−a3a4a6b1c2c5+a1a3a4b6c2c5+
a1a4a6b2c3c5 − a1a2a4b6c3c5 + a2a3a6b1c4c5 − a1a3a6b2c4c5 + a2a4a5b1c3c6 − a1a4a5b2c3c6 −
a2a3a5b1c4c6 + a1a3a5b2c4c6
F8 = a3a5b1b2b6c4− a2a5b1b3b6c4− a1a3b2b5b6c4 + a1a2b3b5b6c4− a3a4b1b2b6c5 + a1a4b2b3b6c5 +
a2a3b1b4b6c5 − a1a2b3b4b6c5 − a3a5b1b2b4c6 + a2a5b1b3b4c6 + a3a4b1b2b5c6 − a1a4b2b3b5c6 −
a2a3b1b4b5c6 + a1a3b2b4b5c6
F9 = a3a5a6b1b2c4−a2a5a6b1b3c4−a1a3a5b2b6c4+a1a2a5b3b6c4−a3a4a6b1b2c5+a1a4a6b2b3c5+
a2a3a6b1b4c5 − a1a3a6b2b4c5 + a1a3a4b2b6c5 − a1a2a4b3b6c5 + a2a4a5b1b3c6 − a1a4a5b2b3c6 −
a2a3a5b1b4c6 + a1a3a5b2b4c6
F10 = a3a5a6b1b2b4−a2a5a6b1b3b4−a3a4a6b1b2b5+a1a4a6b2b3b5+a2a3a6b1b4b5−a1a3a6b2b4b5+
a2a4a5b1b3b6 − a1a4a5b2b3b6 − a2a3a5b1b4b6 + a1a2a5b3b4b6 + a1a3a4b2b5b6 − a1a2a4b3b5b6

J:MM==ideal(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, D126, D135, D234, D456)

true

There are some interesting things to note about the generators of J:MM. We already know that
the degree 3 polynomials determine the triple points on the arrangement, but three of the degree
6 polynomials are different than the others. Those three generators only contain two of the three
variable letters (i.e. only a&b, a&c, or b&c, as opposed to all three). Also, these polynomials are
“symmetric” with respect to their subscripts. If we look at the last generator F10 we see that the
first two terms are a3a5a6b1b2b4 − a2a5a6b1b3b4 − . . . and the last two are · · · + a1a3a4b2b5b6 −
a1a2a4b3b5b6. The subscripts of a in the first two terms are the subscripts of b in the last two, and
vice versa. All of the two-letter polynomials have 12 terms, with the letters and signs changing
after the sixth term. We believe these polynomials are associated with the three double points on
the arrangement, but are still unsure about the precise relationship.

Theoretically, our J:MM ideal should be equal to Rimányi et al.’s ICM
. After all, he said earlier

that Ynaive = YCM
∪ {M ∈ C3x6|r(M) <= 2}, and what we did with the colon ideal was remove

{M ∈ C3x6|r(M) <= 2} from Ynaive. In actuality, however, there appear to be some big differ-
ences. J:MM doesn’t have any degree 5 generators and only has ten degree 6 generating polynomi-
als. We decided to test the degree 5 polynomial that they explicitly stated was a minimal generator
of ICM

, which we saw earlier. It turns out that the degree 5 polynomial given by Rimányi et al. is an
element of the ideal generated by our 14 polynomials (F1, F2, . . . , F10, D126, D135, D234, D456).
This means that the list of polynomials that Rimányi et al. claim are the minimal defining equa-
tions for the braid arrangement contain some redundant polynomials (the three degree 5 and two
of the degree 6), and therefore by definition can not be minimal defining equations.
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6.4 Applications of the Braid Arrangement

The braid arrangement has applications in widely-varied fields, such as robotics and political the-
ory.

Say that we have n robots in the real plane such that we do not want them to run into one
another. Now view R2 as C, and let Fn(C) be the set of all possible positions of the robots
such that they are not touching. Let M(An) = V/ ∪ Hij be the complex complement of the
braid arrangement. Then Fn(C) = M(An). Recall that the elements of the braid arrangement
are of the form {(v1, v2, . . . , vn) ∈ V |vi = vj}. In this context, these points are locations on
the plane at which some robots are colliding. In fact, the braid arrangements represent all of the
undesired points, so if we remove the braid arrangements from V , we are left with all of the possible
configurations of robots {(v1, v2, . . . , vn) ∈ V |vi 6= vj}. These points are exactly the elements of
Fn(C), the places at which no robots are touching. This is a way in which the braid arrangement
can be used to improve robot motion planning. Yuzvinsky et al. [5] studied algorithms that move
the robots from one configuration (point in Fn(C)) to another without ever passing through the
braid arrangement, ensuring no collisions.

In the realm of political theory, the braid arrangement can be used to prove Arrow’s Impossibil-
ity Theorem, which is far from obvious. Here is the situation: we are given m voters and n policy
options to be ranked. The goal is to find a “good” way to decide the final ranking of the n options,
based on the preferences of the m voters. We define a social welfare function to be a method to
decide the final ranking given any possible combination of society’s votes such that the following
axioms are satisfied:

(i) If everyone prefers i to j then so does society, and

(ii) Whether society prefers i to j depends only on each individual’s preferences for i and j and
does not include their rankings for other policies

We call a social welfare function in which only one person’s vote counts a dictatorship, and
that person a dictator. With this in mind, we give Arrow’s Impossibility Theorem:

Theorem 6.4.1 (Arrow’s Impossibility Theorem [1]). The only social welfare function which sat-
isfies both axioms (i) and (ii) is a dictatorship.

To explain the connection with the braid arrangement, we note that the complement of the braid
arrangement An(R) is the disjoint union of several connected components, called the chambers of
An. Because elements (v1, . . . , vn) of these chambers are in the complement of the braid arrange-
ment, there are no i and j such that vi = vj in these elements. Therefore, each of these chambers
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represents some ordering of the vi, which corresponds to an overall societal ranking of the n op-
tions (option i is preferred to option j if vi > vj . Let Ch be the set of chambers of the complement
of the braid arrangement. Then, a social welfare function of a society of m voters corresponds to a
map

Φ : (Ch)m → Ch,

which satisfies the mathematical interpretation of (i) and (ii). Terao [29] uses the chambers of
the complement of An to provide a proof for this theorem, by showing that the only social welfare
function is a projection, i.e. taking one voter’s ranking to be society’s ranking.

7 Characteristic Numbers

Another interesting property of hyperplane arrangement intersection types is the number of curves
of various degrees they are tangent to. In this setting, an arrangement is tangent to a curve if
the curve is an element of the arrangement or if an intersection point of the arrangement lies
on the curve. Earlier, we calculated the number of distinct hyperplane arrangements of a fixed
combinatorial intersection type that passed through a certain number of points in general position.
Now, we are no longer restricted to only placing points in general position, we can fix lines and
other curves as well. We begin with Theorem 7.0.2 (for a proof, see Fulton [7]).

Theorem 7.0.2. Let D1, . . . , Dr be curves of degree ni and class mi in general position. The
number of arrangements tangent to D1, . . . , Dr is given by expanding the polynomial

Πr
i=1(miµ+ niν)

where µkνr−k is to be replaced by the number of arrangements passing through k general points
and tangent to r − k general lines.

To make this theorem more applicable, we modify some of the notation to match our own and
add a factor to account for arrangements that both pass through points and lie tangent to curves.
This yields Theorem 7.0.3, which involves a polynomial we will call the tangency polynomial.

Theorem 7.0.3. The number of arrangements of ` lines with lattice typeLwith dimension t through
p points and tangent to t − p curves of degree d is: (dµ + d(d − 1)ν)(t−p)µp. Here again the
monomial µkνt−k is to be replaced by the number of arrangements with lattice type L passing
through k general points and tangent to t− k lines.

This gives a formula for the number of arrangements through p points and tangent to t − p
curves with respect to L, d, and p. Fulton calls µkνt−k , which represents the number of arrange-
ments passing though k points and tangent to t − k lines, the “characteristic” of the arrangement.
Therefore, to evaluate this polynomial for a particular intersection type, it is necessary to generate
the table of characteristic values. Let’s look at an example: the pencil of three lines.



51

Example 7.0.4. Let ` = 3 lines be arranged in a pencil configuration with dimension t = 5.
Calculate the number of arrangements that pass through p points and 5− p curves of degree d = 1,
with p an integer such that 0 ≤ p ≤ 5.

The first characteristic number we calculate is µ5ν0. This is simply the number of pencils of
three lines that passes through five points in general position, which we calculated earlier to be
(5
2)(

3
2)

2
= 15, so µ5ν0 = 15. Next is µ4ν1. Our arrangement must be tangent to this general line,

and we defined tangency to mean that two lines in the arrangement must intersect on the general
line. In the pencil configuration, all lines meet at a single point, so this lone intersection point must
lie on the general line for the arrangement to be tangent to it, as depicted in Figure 19.

Figure 19: Pencil of three lines passing through four points and tangent to one line (dotted) in
general position.

The number of such arrangements is easily calculated. Two of the four general points are
chosen for the first line, and the other two lines each pass through one of the general points and
the intersection of the first line and the tangent line. The labels on the second and third line are

interchangeable, which makes the size of the symmetry group 2. The resulting count is: (4
2)(

2
1)(

1
1)

2
=

6.

Solving for the next characteristic number, µ3ν2, is very similar. There are two general lines
in this case, and the arrangement must be tangent to both of them. With only one intersection
point in the whole arrangement, this means that the intersection point of the pencil must lie at the
intersection of the two general lines, shown in Figure 20 on the next page.

Each of the three lines in the arrangement goes through one of the general points and the
intersection of the two general lines. No matter what order these three lines are picked in, the
arrangement will always be the same. Therefore, after placing the three points and two lines in
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Figure 20: Pencil of three lines passing through three points and tangent to two lines (dotted) in
general position.

general position in the projective plane, there is only one pencil that can satisfy our tangency
criteria.

The remaining characteristics all have something in common: there are more than two lines
that must be tangent to the arrangement. It is quickly apparent that it is impossible to satisfy the
tangency criterion. For a pencil of three lines to be tangent to three or more other lines, the other
lines must all meet at one point; however, by definition these lines are in general position, so there
can not exist such a common intersection point. Therefore, there are no arrangements of pencils of
three lines that are tangent to three or more general lines, so these characteristic numbers are 0.

All six characteristic numbers (µ5ν0, µ4ν1, . . . , µ0ν5) are displayed in Table 2.

Points Lines Characteristic Number
5 0 15
4 1 6
3 2 1
2 3 0
1 4 0
0 5 0

Table 2: Characteristic numbers for pencils of 3 lines.

Having determined the characteristic numbers for this intersection type, we can begin working
with the tangency polynomial to answer enumerative problems by substituting the appropriate
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characteristic for each µkνt−i. One such problem is: how many pencils of three lines are tangent
to five conics? In this case, ` = 3, t = 5, d = 2,and p = 0, so the number of such arrangements is

(2µ+ 2(2− 1)ν)5µ0 = (2µ+ 2ν)5 = 32(µ5 + 5µ4ν + 10µ3ν2 + 10µ2ν3 + 5µν4 + ν5)

= 32(15 + 5(6) + 10(1) + 10(0) + 5(0) + 0) = 32(55) = 1760.

This answer can be verified independently by combinatorics, as well.

All of the characteristic values for pencils can be calculated for an arbitrary number of lines,
making the tangency polynomial easy to use for pencils.

Theorem 7.0.5. The characteristic numbers for pencils of ` lines are shown in Table 3.

Points Lines Characteristic
`+ 2 0 3

(
`+2
4

)
`+ 1 1

(
`+1
2

)
` 2 1
· · · · · · · · ·
1 `+ 1 0
0 `+ 2 0

Table 3: Characteristic numbers for pencils of ` lines.

Proof. Let A be an arrangement of ` lines forming a pencil.

The characteristic number for ` + 2 points and 0 lines is the same as the count we proved for
Theorem 3.1.4:

3

(
`+ 2

4

)
= 3(

(`+ 2)!

4!(`− 2)!
) =

(`+ 2)!`!

8(`!)(`− 2)!
=

(
`+2
2

)(
`
2

)
2

.

The general formula for calculating the characteristic number for `+ 1 points and 1 line in general
position is not particularly complicated. Recall from our earlier example that in the case of 4
points and 1 line, we picked two of the points in general position to determine the first line in
the arrangement, but after that the remaining lines in the arrangement each had to pass through a
point in general position and the intersection of the first line in the arrangement with the general
tangent line. Similarly, in the general case, once two of the ` + 1 points are chosen to determine
the first of the ` lines (contributing a factor of

(
`+1
2

)
to the count), the arrangement is fixed and

the remaining ` − 1 lines are placed with no choice. This yields a characteristic number of
(
`+1
2

)
.

The reasoning we used in Example 7.0.4 for the case of 3 points and 2 lines is exactly applicable
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to the general case of ` points and 2 lines. The arrangement must be tangent to both general lines
and still go through all ` points in general position, and there is only one possible pencil of ` lines
that meets these criteria. Therefore, the characteristic number for ` points and 2 lines in general
position is always 1. For all of the cases in which more than two lines must be made tangent to
the arrangement, the count is 0, because there is only one point of intersection in pencils and that
point can not lie on more than two lines in general position.

Now that we have determined the general formulas for the characteristic numbers of a pencil
of ` lines, we can use these numbers in the tangency polynomial to solve myriad enumerative
problems.

Example 7.0.6. How many arrangements of 5 lines in a pencil pass through 3 points and are
tangent to 4 conics placed in general position in the projective plane P2?

The tangency polynomial, as stated in Theorem 7.0.3, is (dµ+d(d−1)ν)(t−p)µp, where t is the
dimension of the arrangement, p is the number of points in general position, t − p is the number
of curves of degree d in general position, and µkνt−k is the characteristic number. In this example,
t = 7, p = 3, and d = 2, resulting in the following polynomial:

(2µ+ 2ν)4µ3 = 24(µ4 + 4µ3ν + 6µ2ν2 + 4µν3 + ν4)(µ3)

= 24(µ7 + 4µ6ν + 6µ5ν2 + 4µ4ν3 + µ3ν4).

From our formulas in Theorem 3, we calculate the characteristic numbers for a pencil of 5
lines, shown in Table 4.

Points Lines Characteristic
7 0 3

(
5+2
4

)
= 105

6 1
(
5+1
2

)
= 15

5 2 1
· · · · · · · · ·
1 6 0
0 7 0

Table 4: Characteristic numbers for pencils of 5 lines

Substituting the appropriate values for µkνt−k in the tangency polynomial, we solve for the
count:

24(µ7 + 4µ6ν + 6µ5ν2 + 4µ4ν3 + µ3ν4) = 24(105 + 4(15) + 6(1) + 4(0) + 1(0)) = 2736.
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In addition to calculating the characteristic numbers for pencils of ` lines, we also investigate
the characteristic numbers of lines in general position. This is a much more difficult problem
to address, because there are far more points of intersection in the arrangement (

(
`
2

)
, as opposed

to 1), which can be used to satisfy the tangency condition. Using the same counting methods
as for the characteristic numbers of pencils, we calculated the characteristic numbers of generic
arrangements of 3 lines, displayed in Table 5.

Points Lines Characteristic
6 0 15

5 1 30

4 2 48

3 3 57

2 4 48

1 5 30

0 6 15

Table 5: Characteristic numbers for generic arrangements of 3 lines

A very interesting property of the characteristic numbers of generic arrangements of 3 lines is
their symmetry, i.e. µ6ν0 = µ0ν6, µ5ν1 = µ1ν5, etc. This symmetry comes from the fact that the
dual of a generic arrangement of 3 lines through 6 general points is a generic arrangement of 3
lines tangent to 6 general lines, and vice versa. In this case, by the description of dualizing given
in Section 2.1, the 6 general points dualize to the 6 general lines, the 3 lines in the arrangement
dualize to the 3 double points, and the 3 double points dualize to the 3 lines in the arrangement.
The same dual relationship exists for µ5ν1/µ1ν5 and µ4ν2/µ2ν4.

While we have a great degree of confidence in the characteristic numbers in Table 5, our results
for ` = 4 lines, shown in Table 6 at the top of the next page, are somewhat less certain.

As you can see, there is not nearly the kind of nice symmetrical pattern for the characteristic
numbers of generic arrangements as there is for pencils, so we have been unable to this point to find
a generalized formula for these characteristic numbers. In fact, we are only able to bound some
of the individual characteristic numbers, because these numbers, calculated using the intersection
polynomial, contain arrangements with double lines. We are unsure how many such arrangements
there are (and in some cases we have excess intersection – higher dimensional extraneous compo-
nents that count “as a finite number of points” – see Fulton [6]), so we do not know how much we
should subtract from the intersection polynomial result. Therefore, we know what the upper bound
of the characteristic number is, but not what the actual number is.

There is one very interesting result in the characteristic numbers of 4 generic lines that we can
comment on: the number of arrangements tangent to 8 general lines is 16695, the same as the count
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Points Lines Characteristic
8 0 105

7 1 315

6 2 855

5 3 ≤ 2070

4 4 ≤ 4010

3 5 ≤ 8190

2 6 ≤ 13215

1 7 17955

0 8 16695

Table 6: Characteristic numbers for generic arrangements of 4 lines

for the braid arrangement. The reason that these numbers are the same is due to the relationship
between the dual of 4 generic lines tangent to 8 general lines and the braid arrangement. When we
dualize 4 generic lines that are tangent to 8 general lines, the 8 lines become 8 points in general
position, the 4 generic lines become triple points, and the 6 double points in the arrangement
become lines. In this dualized arrangement, the 6 dual lines go through the 8 points. Uncovering
this relationship presents the possibility that we may be able to find other similar relationships
between duals of arrangements, and use this relationship to find the correct characteristic numbers.
As tempting as it may seem to assume that the characteristic numbers for generic arrangements of
4 lines exhibit the same kind of symmetry as those for generic arrangements of 3 lines, this is not
the case. When working with generic arrangements of 3 lines, it just so happens that the number
of double points (which dualize to lines) is equal to the number of lines (which dualize to double
points). Because this is the case, generic arrangements of 3 lines through k general points and
tangent to 6 − k general lines always dualize to generic arrangements of 3 lines through 6 − k
general points and tangent to k general lines. However, for generic arrangements of ` ≥ 4 lines,
there are

(
`
2

)
> ` double points in the arrangement, so generic arrangements of ` ≥ 4 lines do not

dualize to other generic arrangements of ` ≥ 4 lines. Therefore, the characteristic numbers for
generic arrangements of 4 or more lines are not symmetrical.

8 Conclusion

In this paper, we answer the following enumerative question: How many line arrangements with a
fixed intersection lattice pass through a given number of points in general position in P2? For some
families of arrangements, we have been able to generate explicit formulas to answer this question
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for an arbitrary number of lines `. We prove that there are

(2`)!

`!2`
= (2`− 1)!!

generic arrangements of ` lines through 2` points in general position, and that there are

1

2

(
`+ 2

2

)(
`

2

)
pencils of ` lines through ` + 2 points in general position. We also calculate answers to our main
question for other interesting intersection lattice types, like the “tie-fighter” of five lines, of which
there are 5355 through 8 points in general position. These results can be computed using both
combinatorial methods and the intersection polynomial in the Chow ring of (P2∗)`. By taking the
coefficient of the appropriate term in this polynomial and dividing by the size of the symmetry
group, we arrive at the same answers.

The multivariate Tutte polynomial completely encodes all the information of an intersection
lattice or the associated matroid. Many invariants of matroids, like the characteristic polynomial,
are evaluations of the multivariate Tutte polynomial. For generic arrangements and pencils, we
find connections between evaluations of the Tutte polynomial and the solutions to our enumerative
problem.

We also generalize some of our results to enumerative problems of arrangements tangent to
arbitrary curves in P2. To do this, we compute the characteristic numbers for an arrangement
and build the tangency polynomial. We compute these characteristic numbers for all pencils and
generic arrangements of three lines. Surprisingly, for four generic lines the computations are much
more difficult, but we are able to construct upper bounds. The characteristic numbers for generic
arrangements of three lines exhibit nice symmetry, which might lead to a generalized notion of
duality.

In computing solutions to our main enumerative problem, we investigate the moduli space of
various intersection lattices. Each point on one of these moduli spaces corresponds to an arrange-
ment with that intersection lattice. The dimension of a particular intersection lattice’s moduli space
is equal to the number of points that a finite nonzero number of arrangements of that lattice type
pass through. These moduli spaces and their closures can be extremely complicated. However, we
can explicitly calculate generators for the ideal of the closure for some complicated examples.

The main results in this paper are related to the braid arrangement A4. Using both complicated
combinatorial and intersection theory methods, we calculate that there are 16695 braid arrange-
ments through 8 points in general position in P2. In investigating the moduli space of the braid
arrangement, we generated a list of minimal defining equations for this moduli space that is differ-
ent from what is found in the literature. Another interesting result regarding the braid arrangement
is that the characteristic number for a generic arrangement of four lines tangent to eight general
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lines is also 16695. This connection arises because the braid arrangement is the dual of the generic
arrangement of four lines tangent to eight general lines.

One of the things that strikes me most in this research is how often intuition can be mislead-
ing. Specific enumerative questions are extremely easy to pose, with any number of geometric
constraints possible. However, sometimes it takes an extraordinary amount of work just to prove
that it is impossible for an arrangement to satisfy these geometric conditions, even when it seems
that this shouldn’t be the case. Another example of the unpredictable outcome of these problems
concerns the braid arrangement and generic arrangement of six lines. A generic arrangement con-
tains no points of higher multiplicity, and every line in the arrangement passes through two points
in general position. In the braid arrangement there are four triple points, and multiple complicated
constructions. It would seem that there would be more possible generic arrangements than braid
arrangements due to the greater degree of “freedom;” however, this is decidedly not the case. There
are 10395 generic arrangements of six lines through twelve points and 16695 braid arrangements
of six lines through eight points.

9 Open Problems

The results in this paper have spawned many questions for further research. Conceivably, we want
a formula to solve the enumerative problem for any intersection lattice type. It is possible that the
way in which we will be able to generate these explicit formulas for additional intersection lattice
types will not be in combinatorics, as was the case for generic arrangements and pencils, but in the
Chow ring.

Similarly, we have found evaluations of the Tutte polynomial that give the correct solution to
our main problem for some intersection lattice types, but we do not know how to apply evalua-
tions of the Tutte polynomial to other lattice types. Since the Tutte polynomial encodes the same
information as the intersection lattice, we believe there must be a systematic way to solve our enu-
merative question using the Tutte polynomial. Another area in which we would like to expand our
current work is characteristic numbers. Knowing the characteristic numbers for an arrangement
is a powerful tool, because it allows us to answer all kinds of enumerative questions involving
that arrangement. We have not been able to find formulas for characteristic numbers of families
of intersection lattices other than the pencil, but knowing that there is a connection between the
counts of an arrangement and its dual (such as the generic arrangement of four lines tangent to
eight general lines and the braid arrangement) might give us a new approach to searching for them.

There are many open problems involving the moduli spaces of arrangements with a fixed lattice
type. For example, it might be interesting to see if an intersection lattice’s moduli space has any
singularities, such as self-intersection, and what information that might tell us about arrangements
with that intersection lattice. Also, we have found that some moduli spaces, like that of the braid
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arrangement, are made up of components of different dimensions. Sometimes it is necessary to
remove some of these components to eliminate extraneous lattice types, but this is a delicate pro-
cess. We would like to know more about these components, and the make-up of moduli spaces in
general.

A Programming

A.1 Sage and Macaulay2

We have defined two functions, apply and symmetries, to compute and return the number of ele-
ments of the symmetry group of ` lines that preserve the intersection conditions specified in the
intersection polynomial. The input for the apply function is an operation p and a list s, and the
output is the list of p applied to all elements of s. For symmetries, the inputs are the list of de-
terminantal conditions lt and a number of lines l, and the outputs are the number of appropriate
permutations on the line labels and the list of all of these permutations.

def apply(p,s):
ans = [] %Creates an empty list into which we can add p

applied to the elements of s
for i in range(len(s)): %Indexes s to ensure we account for each of its

elements
ans.append(p(s[i])) %For every element of s, adds p applied to that

element to the list ans we created at the beginning
of the function

return ans %At the output we have the list of each element
of s after p has been applied to it

def symmetries(lt,l):



60

t = apply(set,lt) %When we input the determinantal conditions lt
and then check to see which permutations are one
to one and onto from lt onto lt, we want order not
to matter. i.e. [1,4,6]=[1,6,4]. To accomplish this
in sage, we need to have the elements of lt be a
set, but entering sets is a bit tedious, so we enter
a list lt and then use the apply function to turn all
of the elements of lt into sets

pset = [] %Creates an empty list into which we can add the
elements of the symmetry group that preserve the
intersections in lt

for p in SymmetricGroup(l):
flag = 1 %The flag here represents a true or false condi-

tion. That is, we start by assigning each p in
SymmetricGroup(l) a flag of 1 (or true), and then
test it with each element of lt. If there exists an
element in the range of p that isn’t in lt or there
exists an element of lt that isn’t in the range of p,
then we change the the flag value to 0 (or false).
If flag = 0, we break the if statement and move
on to the next value of p. If flag remains 1 (i.e. p
was one to one and onto), then we add the permu-
tation applied to each of the numbers 1 through l
to the list pset

for s in t:
if set(apply(p,list(s))) not in t: %We had to convert s back into a list inside the

apply function because you can not index a set.
Then we turned this into a set to ignore order

flag = 0
break

if flag == 1:
pset.append(apply(p,range(1,l+1)))

return(len(pset),pset) %Yields the number of elements of pset (the
number of elements in the symmetric group that
preserve the intersection points) and those ele-
ments of the symmetric group themselves

When working with matroids and the Tutte polynomial, there are a few important calculations
that must occur. First, it is important to find the independent sets of an arrangement. To do this,
we wrote a function that takes a matrix representation of an arrangement as input, and outputs the
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list of independent sets. Additionally, to construct the Tutte polynomial we must be able to find
the rank of some set of lines. We wrote a rank function that takes as input a list, which represents
the grouping of the lines in the arrangement for which we’re calculating rank, and the list of all
independent sets determined by the independentsets function. The rank function’s output is the
rank of this list. Finally, we needed a way to build each xi, so we wrote a variable generating
function, which constructs variables of the form xi for i values from 0 to `− 1.

def independentsets(M):
c = M.columns() %Creates a set containing the columns of M
n = len(c) %Determines the number of columns in M
E = range(n) %Creates a list from 0 to n-1
P = list(powerset(E)) %Generates the list of all subsets of {0,...,n-1}
I = [] %Creates an empty list that will eventually be the list of

independent sets
while not(P==[]): %Checks to make sure P isn’t empty

x = P[0] %Takes the first element of P, some collection of numbers
between 0 and n-1, which represents some subset of the
columns of M

mat = []
for y in x:

mat.append(c[y]) %Each number in x is the label of a column in M. This step
uses those labels to retrieve the columns they represent and
add them to the list “mat”

W = matrix(mat) %Converts “mat” to a matrix, with rows that are columns
in M

Q = transpose(W) %Transposes W, so that columns in Q are columns in M
if Q.rank() == len(x): %Sage’s built-in rank function calculates rank of Q

I.append(x) %This step uses the fact that if the rank of a matrix is equal
to its number of columns, then those columns are indepen-
dent. Therefore, that subsets of columns in M is indepen-
dent, so we add the subset “x“ to the list of independent
sets

P.remove(x) %Recall that x was defined as being the first element of P.
When we remove x from P at the end of the loop, we make
a new element of P the first element and allow the loop to
continue

else: %If the rank of Q is not equal to its number of columns,
then they are not independent

EE = range(n) %Creates a new list of numbers from 0 to n-1
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for j in x:
EE.remove(j) %Removes the elements of x (some subset of (0,...,n-1))

from EE, because we know that those columns of M repre-
sented by x are dependent

for i in list(powerset(EE)): %Generates the powerset of the numbers from 0 to n-1 that
weren’t in x

if list(set(x).union(set(i))) in P:
%Takes the union of x with the elements of the powerset of
EE, and checks to see if those unions are elements of P

P.remove(list(set(x).union(set(i))))
%This step is a time-saving measure for the program. It
uses the fact that if a subset of columns of M is dependent,
then any subset of columns of M containing that depen-
dent subset must also be dependent. This prevents us from
having to check every single subset of columns of M for
dependence, because as soon as we find a single dependent
subset we are able to eliminate a good number of larger
subsets

return I %Returns independent subsets of columns of M

def rank(a,S):
b = set(a) %Turns list “a” into a set
c = 0 %This value c will eventually be the rank of a
R = apply(set,S) %Turns the list of independent sets S into a set
for k in R: %Takes each of the independent sets one at a time

if len(k.intersection(b)) ≥ c: %This step uses the fact that the rank of “a” is equivalent to
the size of its maximum intersection with independent sets
of M

c = len(k.intersection(b)) %We calculate the size of these intersections for each ele-
ment of S and keep track of the greatest one by setting it
equal to c. Once we’ve tested each subset, the final value
of c is the rank of “a”

return c %Returns the rank of “a”
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def varx(i):
return ’x ’+str(i) %Oftentimes we work with variables of the form xi. Sage

does not recognize these as variables if inputted directly, so
we wrote a program to create objects of this form

def variables(l): %This program takes the objects we create using varx and
makes them variables. This is unusual in that SAGE usually
requires the variables to be hard coded into a script – you
can’t usually have a “variable” number of variables

p = [] %Creates an empty list that will eventually be the list of
variables x0, x2, . . . , xl−1

for i in range(l):
p.append(varx(i)) %Adds xi to the list of variables p for each i from 0 to l-1

v = apply(var,p) %Uses the apply function to make each of the elements of
p become a variable

return v %Returns a list of variables from x0 to xl−1

Using the above functions, we made a function that takes a matrix M representing an arrange-
ment and creates that arrangement’s Tutte polynomial.

def Tutte(M): %Input is the matrix representation of a hyperplane ar-
rangement

l = len(M[0]) %Calculates the number of columns in the first row of M
S = independentsets(M) %Determines the independent subsets of columns of M
P = list(powerset(range(0,l))) %Creates the list of subsets of (0,...,l-1)
R = apply(set,S) %Changes the list of independent sets of M into a set
V = variables(l) %Makes variables from x0 to xl−1
q = var(’q’) %Creates the variable q to be used in the Tutte polynomial
c = 0 %Creates what will eventually be the Tutte polynomial
for i in P: %Tests each element of the powerset of l

u = set(i) %Changes a list of labels of columns of M into a set
e = rank(u,R) %Calculates the rank of that subset of columns of M
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a = qˆe %Creates part of the term of the Tutte polynomial corre-
sponding to the particular collection of lines (columns of
M) i

for j in i: %Pulls line labels from i one at a time
a = a*(V[j]) %Builds the term of the Tutte polynomial corresponding to

i line by line, pulling variables from the list of variables V
c = c+a %Once this term “a” is done being constructed, we add it to

the existing iteration of the Tutte polynomial “c.” Then we
construct another term, corresponding to the next element
of the powerset

return c %Returns the final Tutte polynomial

Finally, having determined what the Tutte polynomial is, we want to find soluntions for q and
the xi’s that make an arrangement’s Tutte polynomial equal to its count. This function’s inputs are
the Tutte polynomial, the number of lines, the count, and upper and lower bounds for q and the
xi’s. In this function, all xi have the same bound.

def Tuttesolns(T,l,count,qlow,qup,xlow,xup): %The inputs to this program are the Tutte poly-
nomial T, the number of lines l, and lower and
upper bounds for q and x. Setting wide bounds
allows for more solutions to be computed, but
for faster calculation it is useful to set relatively
narrow bounds

solutions=[] %Creates an empty list to which solutions are
added

for z in range(qlow,qup+1): %Ensures that the Tutte polynomial is evalu-
ated for each value of q between qlow and qup

vars = variables(l) %Creates a list of variables from 0 to l-1
for u in range((xup-xlow+1)ˆl):

S = T(q=z) %Evaluates the Tutte polynomial for the cur-
rent value of q and renames it S

t = ZZ(u).digits(base = xup-xlow+1, padto = l, digits = tuple(range(xlow,xup+1)))
%Generates l-tuples (sequences of l num-
bers) whose elements are integers within the
x bounds. These groups of l numbers will be
substituted for the l variables xi to evaluate the
Tutte polynomial

m = len(t) %Calculates the length of t, which is l
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while m > 0: %Checks the value of m to see if it’s positive.
This while loop ensures that every element of
our l-tuple t is substitued into the Tutte polyno-
mial for the appropriate variable

S = S.subs(vars[m-1] == t[m-1]) %Substitutes the (m-1)th element of t for xm−1
in the Tutte polynomial

m = m-1 %Having evaluated the Tutte polynomial at
xm−1, we bring the value of m down by 1 and
run it through the while loop again. If we just
evaluated x0, the while loop will end

if S == count: %After the while loop has completed, we will
have substitued integer values for q and all xi.
The resulting value of the Tutte polynomial
will be some integer S. We entered the count,
which we calculated using combinatorics or
some other method, as an input to the function,
and now we simply check and see if these val-
ues are the same

solutions.append([z,t]) %If the count is equal to the evaluation of the
Tutte polynomial, we record the corresponding
q value and xi values. At this point, we have
tested all possible xi values after setting a sin-
gle q value. Therefore, the function now picks
the next value for q and retests all possible xi
values

return solutions %After testing all values for q within in the q-
bounds and xi within the x-bounds, we return
the list of values for these variables that yielded
our desired count
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